【bzoj4827】[Hnoi2017]礼物 FFT
题目描述
输入
输出
样例输入
5 6
1 2 3 4 5
6 3 3 4 5
样例输出
1
题解
FFT
首先,不用枚举c!

由于要求的是相对关系,所以给第二个手环+c就是给第一个手环-c。
设旋转后i位置分别为xi和yi,那么通过上面的式子可以得出c的最优取值与x和y的对应关系无关。
也就是说无论如何旋转,c的最优值总是固定的(sumy-sumx)/n(四舍五入到整数)
这样可以预处理出两个环的具体数值。
剩下的就交给FFT吧,将环倍增,所求即∑(x[i+k]-y[i])^2=∑x[i+k]^2 + ∑y[i]^2 - 2*x[i+k]*y[i]的最小值。
前两项可以预处理出来,最后一项同 bzoj2194 ,转化为卷积来求。
注意平方和不是和的平方。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 1 << 20
#define pi acos(-1)
using namespace std;
struct data
{
double x , y;
data() {x = y = 0;}
data(double x0 , double y0) {x = x0 , y = y0;}
data operator+(const data a)const {return data(x + a.x , y + a.y);}
data operator-(const data a)const {return data(x - a.x , y - a.y);}
data operator*(const data a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N] , b[N];
double sx[N] , sy[N];
void fft(data *a , int n , int flag)
{
int i , j , k;
for(i = k = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = (n >> 1) ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
for(i = 0 ; i < n ; i += k)
{
data t , w(1 , 0);
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn)
t = w * a[j + (k >> 1)] , a[j + (k >> 1)] = a[j] - t , a[j] = a[j] + t;
}
}
}
int main()
{
int n , i , len;
double c = 0 , ans = 10000000000 , sumx = 0 , sumy = 0;
scanf("%d%*d" , &n);
for(i = 0 ; i < n ; i ++ ) scanf("%lf" , &sx[i]) , c -= sx[i];
for(i = 0 ; i < n ; i ++ ) scanf("%lf" , &sy[i]) , c += sy[i];
c = round(c / n);
for(i = 0 ; i < n ; i ++ ) sumx += (sx[i] + c) * (sx[i] + c) , sumy += sy[i] * sy[i];
for(i = 0 ; i < 2 * n ; i ++ ) a[i].x = sx[i % n] + c;
for(i = 0 ; i < n ; i ++ ) b[i].x = sy[n - i - 1];
for(len = 1 ; len < 2 * n ; len <<= 1);
fft(a , len , 1) , fft(b , len , 1);
for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * b[i];
fft(a , len , -1);
for(i = n - 1 ; i < 2 * n - 1 ; i ++ ) ans = min(ans , sumx + sumy - 2 * round(a[i].x / len));
printf("%.0lf\n" , ans);
return 0;
}
【bzoj4827】[Hnoi2017]礼物 FFT的更多相关文章
- BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)
题意 题目链接 Sol 越来越菜了..裸的FFT写了1h.. 思路比较简单,直接把 \(\sum (x_i - y_i + c)^2\) 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数 ...
- BZOJ4827:[HNOI2017]礼物(FFT)
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- [bzoj4827][Hnoi2017]礼物_FFT
礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我 ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- BZOJ4827 [Hnoi2017]礼物 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y ...
- bzoj4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
随机推荐
- 简单理解Socket 重要
http://www.cnblogs.com/dolphinX/p/3460545.html 题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公司使用的一些控件的开发,浏览器 ...
- android中反射技术使用实例
在计算机科学领域.反射是指一类应用,它们能够自描写叙述和自控制.也就是说,这类应用通过採用某种机制来实现对自己行为的描写叙述(self-representation)和监測(examination), ...
- 使用iframe标签隐藏CSRF代码
index.html <iframe src="1.html" width="0" height="0"></iframe ...
- Python 模块化 from .. import 语句介绍 (二)
from语句 例一. from pathlib import Path,PosixPath print(dir()) print(Path) print(PosixPath) 运行结果: ['Path ...
- jquery mobile header title左对齐 button右对齐
<div data-theme="b" data-role="header" data-position="fixed"> &l ...
- saltstack安装配置(yum)
主机规划: (主)master:192.168.25.130 (从)minion:192.168.25.131 192.168.25.132 1.yum安装: 服务端:安装master yum ...
- [LuoguP3668][USACO17OPEN]现代艺术2
[LuoguP3668][USACO17OPEN]Modern Art2(Link) 现在你有一块长为\(N\)的画布,每次可以选择一段连续的区间进行颜色填涂,新颜色会覆盖旧颜色.每一次填涂都要耗费一 ...
- 什么是工厂函数?Python 中工厂函数怎么理解?(转)
所谓工厂函数就是指这些内建函数都是类对象(实际上是类), 当你调用它们时,实际上是创建了一个类实例. type():查看类型
- 过滤ST/退市股票
nest_dict = {'code': {1: '000033', 2: '002113', 3: '002260', 4: '002512'}, 'name': {1: '新都退', 2: 'ST ...
- 纸质文稿如何生成PDF
步骤: (1) 将即将要转换的文稿单张向下放入打印机. (2) 将打印设备(打印机)连接至你的电脑. (3) 打开控制面板,点击"查看设备和打印机". (4) 找到你当前的打印设备 ...