【bzoj4827】[Hnoi2017]礼物 FFT
题目描述
输入
输出
样例输入
5 6
1 2 3 4 5
6 3 3 4 5
样例输出
1
题解
FFT
首先,不用枚举c!

由于要求的是相对关系,所以给第二个手环+c就是给第一个手环-c。
设旋转后i位置分别为xi和yi,那么通过上面的式子可以得出c的最优取值与x和y的对应关系无关。
也就是说无论如何旋转,c的最优值总是固定的(sumy-sumx)/n(四舍五入到整数)
这样可以预处理出两个环的具体数值。
剩下的就交给FFT吧,将环倍增,所求即∑(x[i+k]-y[i])^2=∑x[i+k]^2 + ∑y[i]^2 - 2*x[i+k]*y[i]的最小值。
前两项可以预处理出来,最后一项同 bzoj2194 ,转化为卷积来求。
注意平方和不是和的平方。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 1 << 20
#define pi acos(-1)
using namespace std;
struct data
{
double x , y;
data() {x = y = 0;}
data(double x0 , double y0) {x = x0 , y = y0;}
data operator+(const data a)const {return data(x + a.x , y + a.y);}
data operator-(const data a)const {return data(x - a.x , y - a.y);}
data operator*(const data a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N] , b[N];
double sx[N] , sy[N];
void fft(data *a , int n , int flag)
{
int i , j , k;
for(i = k = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = (n >> 1) ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
for(i = 0 ; i < n ; i += k)
{
data t , w(1 , 0);
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn)
t = w * a[j + (k >> 1)] , a[j + (k >> 1)] = a[j] - t , a[j] = a[j] + t;
}
}
}
int main()
{
int n , i , len;
double c = 0 , ans = 10000000000 , sumx = 0 , sumy = 0;
scanf("%d%*d" , &n);
for(i = 0 ; i < n ; i ++ ) scanf("%lf" , &sx[i]) , c -= sx[i];
for(i = 0 ; i < n ; i ++ ) scanf("%lf" , &sy[i]) , c += sy[i];
c = round(c / n);
for(i = 0 ; i < n ; i ++ ) sumx += (sx[i] + c) * (sx[i] + c) , sumy += sy[i] * sy[i];
for(i = 0 ; i < 2 * n ; i ++ ) a[i].x = sx[i % n] + c;
for(i = 0 ; i < n ; i ++ ) b[i].x = sy[n - i - 1];
for(len = 1 ; len < 2 * n ; len <<= 1);
fft(a , len , 1) , fft(b , len , 1);
for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * b[i];
fft(a , len , -1);
for(i = n - 1 ; i < 2 * n - 1 ; i ++ ) ans = min(ans , sumx + sumy - 2 * round(a[i].x / len));
printf("%.0lf\n" , ans);
return 0;
}
【bzoj4827】[Hnoi2017]礼物 FFT的更多相关文章
- BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)
题意 题目链接 Sol 越来越菜了..裸的FFT写了1h.. 思路比较简单,直接把 \(\sum (x_i - y_i + c)^2\) 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数 ...
- BZOJ4827:[HNOI2017]礼物(FFT)
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- [bzoj4827][Hnoi2017]礼物_FFT
礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我 ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- BZOJ4827 [Hnoi2017]礼物 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y ...
- bzoj4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
随机推荐
- angularJs的run方法操作
省掉了控制器 <!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv= ...
- Java虚拟机13:Java类加载机制
前言 我们知道我们写的程序经过编译后成为了.class文件,.class文件中描述了类的各种信息,最终都需要加载到虚拟机之后才能运行和使用.而虚拟机如何加载这些.class文件?.class文件的信息 ...
- Guava包学习--EventBus
之前没用过这个EventBus,然后看了一下EventBus的源码也没看明白,(-__-)b.反正大概就是弄一个优雅的方式实现了观察者模式吧.慢慢深入学习一下. 观察者模式其实就是生产者消费者的一个变 ...
- UVa 10288 - Coupons(数学期望 + 递推)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【jQuery】结合accordion插件分析写插件的方法及注意事项
1.jQuery插件的命名方式:jquery.[插件名].js 2.对象方法附加在jQuery.fn上,全局函数附加在jQuery对象本身上 3.插件内部this指向的是通过选择器获取的jQuery对 ...
- Mybatis Plus简介
集成 MP Mybatis-Plus 的集成非常简单,对于 Spring,我们仅仅需要把 Mybatis 自带的MybatisSqlSessionFactoryBean替换为 MP 自带的即可. &l ...
- SSIS Debug
プロジェクト=>最后一项[DEPJ1200プロパテイページ] 1.配置...=>CreaeDeploymentUtility=True2.デパッグ=>Run64BiRuntime=f ...
- HDU1005 Number Sequence(找规律,周期是变化的)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...
- Xcode引入了第三方的类库之后真机调试提示莫名其妙的错误
其中的解决方法就是修改Build Setting里面的Build Active Architecture Only(仅仅编译动态代码),将这个里面的值修改为YES即可.