【bzoj4827】[Hnoi2017]礼物 FFT
题目描述
输入
输出
样例输入
5 6
1 2 3 4 5
6 3 3 4 5
样例输出
1
题解
FFT
首先,不用枚举c!

由于要求的是相对关系,所以给第二个手环+c就是给第一个手环-c。
设旋转后i位置分别为xi和yi,那么通过上面的式子可以得出c的最优取值与x和y的对应关系无关。
也就是说无论如何旋转,c的最优值总是固定的(sumy-sumx)/n(四舍五入到整数)
这样可以预处理出两个环的具体数值。
剩下的就交给FFT吧,将环倍增,所求即∑(x[i+k]-y[i])^2=∑x[i+k]^2 + ∑y[i]^2 - 2*x[i+k]*y[i]的最小值。
前两项可以预处理出来,最后一项同 bzoj2194 ,转化为卷积来求。
注意平方和不是和的平方。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 1 << 20
#define pi acos(-1)
using namespace std;
struct data
{
double x , y;
data() {x = y = 0;}
data(double x0 , double y0) {x = x0 , y = y0;}
data operator+(const data a)const {return data(x + a.x , y + a.y);}
data operator-(const data a)const {return data(x - a.x , y - a.y);}
data operator*(const data a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N] , b[N];
double sx[N] , sy[N];
void fft(data *a , int n , int flag)
{
int i , j , k;
for(i = k = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = (n >> 1) ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
for(i = 0 ; i < n ; i += k)
{
data t , w(1 , 0);
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn)
t = w * a[j + (k >> 1)] , a[j + (k >> 1)] = a[j] - t , a[j] = a[j] + t;
}
}
}
int main()
{
int n , i , len;
double c = 0 , ans = 10000000000 , sumx = 0 , sumy = 0;
scanf("%d%*d" , &n);
for(i = 0 ; i < n ; i ++ ) scanf("%lf" , &sx[i]) , c -= sx[i];
for(i = 0 ; i < n ; i ++ ) scanf("%lf" , &sy[i]) , c += sy[i];
c = round(c / n);
for(i = 0 ; i < n ; i ++ ) sumx += (sx[i] + c) * (sx[i] + c) , sumy += sy[i] * sy[i];
for(i = 0 ; i < 2 * n ; i ++ ) a[i].x = sx[i % n] + c;
for(i = 0 ; i < n ; i ++ ) b[i].x = sy[n - i - 1];
for(len = 1 ; len < 2 * n ; len <<= 1);
fft(a , len , 1) , fft(b , len , 1);
for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * b[i];
fft(a , len , -1);
for(i = n - 1 ; i < 2 * n - 1 ; i ++ ) ans = min(ans , sumx + sumy - 2 * round(a[i].x / len));
printf("%.0lf\n" , ans);
return 0;
}
【bzoj4827】[Hnoi2017]礼物 FFT的更多相关文章
- BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)
题意 题目链接 Sol 越来越菜了..裸的FFT写了1h.. 思路比较简单,直接把 \(\sum (x_i - y_i + c)^2\) 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数 ...
- BZOJ4827:[HNOI2017]礼物(FFT)
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- [bzoj4827][Hnoi2017]礼物_FFT
礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我 ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- BZOJ4827 [Hnoi2017]礼物 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y ...
- bzoj4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
随机推荐
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- C/C++ 格式化读取和读取一行
文件内容 23 21 4 1 1 0 114 1 1 1 8 112 5 0 0 0 114 1 0 0 0 115 52 4 1 0 1 134 4 0 1 12 131 4 1 1 0 133 5 ...
- 随手练——HDU 1251 统计难题
知识点:前缀树.典型的前缀树模板. 这是用next[26]数组的版本,超内存了.(后来发现,用C++交不会超,G++就会超) #include <iostream> #include &l ...
- 20145324 Java实验三
一.git 上传代码步骤 上传结果 原代码 下载同学代码 更改 二.重构 原代码 rename 原代码 实验总结 这次实验比较简单,而且终于解决了git的问题,很开心 步骤 耗时 百分比 需求分析 1 ...
- Dubbo实践(十五)消费者引用服务
Refer取得invoker的过程 <!-- 指定了哪种的注册中心,是基于zookeeper协议的,指定了注册中心的地址以及端口号 --> <dubbo:registry proto ...
- [LuoguP2158][SDOI2008]仪仗队
[LuoguP2158][SDOI2008]仪仗队(Link) 现在你有一个\(N \times N\)的矩阵,求你站在\((1,1)\)点能看到的点的总数. 很简洁的题面. 这道题看起来很难,但是稍 ...
- 无法加载文件或程序集“Newtonsoft.Json”或它的某一个依赖项
未能加载文件或程序集“Newtonsoft.Json”或它的某一个依赖项.找到的程序集清单定义与程序集引用不匹配. (异常来自 HRESULT:0x80131040). 有时候我们创建了一个类库,我们 ...
- leetcode -50. Pow(x, n) Accepted
前言:其实之前自己也有了解关于算法数据结构的一点内容,但是都是用相应的开发工具来写相应的代码,今天面试的时候直接leetcode来写代码,还是用的体内根深蒂固的C和Java来解的题,毕竟目前没见支持O ...
- python3爬虫-爬取B站排行榜信息
import requests, re, time, os category_dic = { "all": "全站榜", "origin": ...
- 【Linux】日志分析及管理
日志的作用 用于记录系统.程序运行中发生的各种事件 eg: [root@localhost ~]# yum install -y httpd [root@localhost ~]# tail ...