bzoj3306: 树(dfs序+倍增+线段树)
比较傻逼的一道题...
显然求子树最小值就是求出dfs序用线段树维护嘛
换根的时候树的形态不会改变,所以我们可以根据相对于根的位置分类讨论。
如果询问的x是根就直接输出整棵树的最小值。
如果询问的x是根在原树上的子节点,直接输出子树的最小值。
如果询问的x是根在原树上的祖先,那么就要输出整棵树去掉x在原树上那个包含根的子节点的子树的答案。
至于怎么求x在原树上那个包含根的子节点,可以用倍增。
但是我发现直接遍历x的子节点居然不会被卡,而且还跑到了第一页嘿嘿嘿
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
const int maxn=, inf=1e9;
struct poi{int too, pre;}e[maxn];
struct tjm{int sum;}tree[maxn<<];
int n, q, x, y, tot, tott, root;
int a[maxn], last[maxn], l[maxn], r[maxn], pos[maxn], d[maxn], f[maxn][];
char s[];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot].too=y; e[tot].pre=last[x]; last[x]=tot;}
void dfs(int x)
{
l[x]=++tott; pos[tott]=x; d[x]=d[f[x][]]+;
for(int i=last[x];i;i=e[i].pre) f[e[i].too][]=x, dfs(e[i].too);
r[x]=tott;
}
inline int min(int a, int b) {return a<b?a:b;}
inline void up(int x) {tree[x].sum=min(tree[x<<].sum, tree[x<<|].sum);}
void build(int x, int l, int r)
{
if(l==r) {tree[x].sum=pos[l]?a[pos[l]]:inf; return;}
int mid=(l+r)>>;
build(x<<, l, mid); build(x<<|, mid+, r);
up(x);
}
void update(int x, int l, int r, int cx, int delta)
{
if(l==r) {tree[x].sum=delta; return;}
int mid=(l+r)>>;
if(cx<=mid) update(x<<, l, mid, cx, delta);
else update(x<<|, mid+, r, cx, delta);
up(x);
}
int query(int x, int l, int r, int cl, int cr)
{
if(cl>cr) return inf;
if(cl<=l && r<=cr) return tree[x].sum;
int mid=(l+r)>>, ans=inf;
if(cl<=mid) ans=query(x<<, l, mid, cl, cr);
if(cr>mid) ans=min(ans, query(x<<|, mid+, r, cl, cr));
return ans;
}
inline int solve(int x)
{
if(x==root) return tree[].sum;
if(l[x]>l[root] || r[x]<l[root]) return query(, , n, l[x], r[x]);
int now=root;
for(int i=;i>=;i--) if(d[f[now][i]]>x) now=f[now][i];
return min(query(, , n, , l[now]-), query(, , n, r[now]+, n));
}
int main()
{
read(n); read(q);
for(int i=;i<=n;i++)
{
read(x); read(a[i]);
if(x) add(x, i);
}
dfs(root=); build(, , n);
for(int j=;j<=;j++) for(int i=;i<=n;i++) f[i][j]=f[f[i][j-]][j-];
for(int i=;i<=q;i++)
{
scanf("%s", s+);
if(s[]=='V') read(x), read(y), update(, , n, l[x], y);
else if(s[]=='E') read(root);
else read(x), printf("%d\n", solve(x));
}
}
bzoj3306: 树(dfs序+倍增+线段树)的更多相关文章
- Codeforces 877E - Danil and a Part-time Job(dfs序+线段树)
877E - Danil and a Part-time Job 思路:dfs序+线段树 dfs序:http://blog.csdn.net/qq_24489717/article/details/5 ...
- [bzoj3306]树_dfs序_线段树_倍增lca
树 bzoj-3306 题目大意:给定一颗n个节点的树,支持换根.修改点权.查询子树最小值. 注释:$1\le n,q\le 10^5$. 想法: 如果没有换根操作,就是$dfs$序+线段树维护区间最 ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- bzoj2819 DFS序 + LCA + 线段树
https://www.lydsy.com/JudgeOnline/problem.php?id=2819 题意:树上单点修改及区间异或和查询. 思维难度不高,但是题比较硬核. 整体思路是维护每一个结 ...
- 用dfs序处理线段树的好题吗?
https://www.cnblogs.com/mountaink/p/9878918.html 分析:每次的选取必须选最优的一条链,那我们考虑一下选择这条链后,把这条路上的点的权值更新掉,再采取选最 ...
- 7月13日考试 题解(DFS序+期望+线段树优化建图)
T1 sign 题目大意:给出一棵 N 个节点的树,求所有起点为叶节点的有向路径,其 上每一条边权值和的和.N<=10000 水题.考试的时候毒瘤出题人(学长orz)把读入顺序改了一下,于是很多 ...
- hdu 3974 Assign the task(dfs序上线段树)
Problem Description There is a company that has N employees(numbered from 1 to N),every employee in ...
- Luogu P2982 [USACO10FEB]慢下来 Slowing down | dfs序、线段树
题目链接 题目大意: 有一棵N个结点树和N头奶牛,一开始所有奶牛都在一号结点,奶牛们将按从编号1到编号N的顺序依次前往自己的目的地,求每头奶牛在去往自己目的地的途中将会经过多少已经有奶牛的结点. 题解 ...
- Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)
思路: dfs序其实是很水的东西. 和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...
随机推荐
- 003--MySQL 数据库事务
什么是事务? 事务是一组原子性的 SQL 查询, 或者说是一个独立的工作单元. 在事务内的语句, 要么全部执行成功, 要么全部执行失败. 事务的 ACID 性质 数据库事务拥有以下四个特性, 即 AC ...
- 算法笔记(c++)--使用一个辅助栈排列另一个栈
算法笔记(c++)--使用一个辅助栈排列另一个栈 仅仅使用一个辅助栈,不使用其他数据结构来排列一个栈,要求,上大下小. 分析下.肯定是先吧主栈中的数据都放到辅助栈中,在辅助栈中上小下大. 1.首先循环 ...
- [转]如何设计自适应屏幕大小的网页 Responsive Web Design
随着3G的普及,越来越多的人使用手机上网. 移动设备正超过桌面设备,成为访问互联网的最常见终端.于是,网页设计师不得不面对一个难题:如何才能在不同大小的设备上呈现同样的网页? 手机的屏幕比较小,宽度通 ...
- /proc/sys目录下各文件参数说明
linux 其他知识目录 原文链接:https://blog.csdn.net/hshl1214/article/details/4596583 一.前言本文档针对OOP8生产环境,具体优化策略需要根 ...
- GitHub 的简单使用
GitHub 的简单使用 2016-01-28 16:32:481909浏览1评论 一.Git 版本控制器 commit:做一个版本:commit new file:添加到版本中,下边填的是项目的描述 ...
- c# 消息机制篡改
1.背景介绍: c#程序想要针对某个的消息进行别的行为.例如:窗体不可拖动. 2.应用函数WinProc 以窗口不可拖动举例: const int WM_NCLBUTTONDOWN = 0x00A1; ...
- 每日Scrum--No.2
Yesterday:找地图 Today: 找到最适合我们软件的地图版本 Problem:找不到特别匹配的版本
- mysqldump without auto_increment
mysqldump -u root -p -h <db-host> --opt <db-name> -d --single-transaction | sed 's/ AUTO ...
- 图文详解 IntelliJ IDEA 15 创建普通 Java Web 项目
第 1 部分:新建一个 Java Web Application 项目 File -> New -> Project…,请选择 Java EE 这个模块下的 Web Application ...
- web三大组件的加载顺序
Web三大组件:过滤器组件 监听器组件 Servlet组件 过滤器的顶级接口:javax.servlet.Filter 监听器的顶级接口:javax.servlet.ServletContextL ...