Connections between cities HDU - 2874(最短路树 lca )
题意:
给出n个点m条边的图,c次询问 求询问中两个点间的最短距离。
解析:
Floyd会T,所以用到了最短路树。。具体思想为:
设k为u和v的最近公共祖先 d[i] 为祖结点到i的最短距离 则dis[u][v] = d[u] + d[v] - 2*d[k]
用tarjan的lca求即可
把这题代码当作模板就好啦
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
const int maxm = 1e6 + ;
int n, m, cnt1, cnt2, c;
int head1[maxn], head2[maxn], f[maxn], d[maxn], vis[maxn];
int res[maxm]; struct node
{
int v, w, next;
}Node[maxn*]; struct edge
{
int v, id, next;
}Edge[maxm*]; void add1_(int u, int v, int w)
{
Node[cnt1].v = v;
Node[cnt1].w = w;
Node[cnt1].next = head1[u];
head1[u] = cnt1++;
} void add1(int u, int v, int w)
{
add1_(u, v, w);
add1_(v, u, w);
} void add2_(int u, int v, int id)
{
Edge[cnt2].v = v;
Edge[cnt2].id = id;
Edge[cnt2].next = head2[u];
head2[u] = cnt2++;
} void add2(int u, int v, int id)
{
add2_(u, v, id);
add2_(v, u, id);
} int find(int x)
{
return f[x]==x?x:(f[x] = find(f[x]));
} int lca(int u, int deep, int root)
{
f[u] = u;
d[u] = deep;
vis[u] = root; // 标记属于的树
for(int i=head1[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(vis[e.v] == -)
{
lca(e.v, deep+e.w, root);
f[e.v] = u;
}
}
for(int i=head2[u]; i!=-; i=Edge[i].next)
{
edge e = Edge[i];
if(vis[e.v] == root) //判断另一个结点是不是和u属于一个树
{
int k = find(e.v); //寻找最近公共祖先
res[e.id] = d[u] + d[e.v] - *d[k];
}
}
} void init()
{
mem(head1, -);
mem(head2, -);
mem(res, -);
mem(vis, -);
cnt1 = cnt2 = ;
} int main()
{
while(scanf("%d%d%d", &n, &m, &c) != EOF)
{
init();
rap(i, , m)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add1(u, v, w);
}
rap(i, , c)
{
int u, v;
scanf("%d%d", &u, &v);
add2(u, v, i);
}
rap(i, , n)
if(vis[i] == -)
lca(i, , i);
rap(i, , c)
{
if(res[i] == -) printf("Not connected\n");
else printf("%d\n", res[i]);
}
} return ;
}
Connections between cities HDU - 2874(最短路树 lca )的更多相关文章
- hdu 3409 最短路树+树形dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3409 参考博客:http://www.cnblogs.com/woaishizhan/p/318981 ...
- HDU 2874 Connections between cities(LCA Tarjan)
Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...
- hdu 2874 Connections between cities [LCA] (lca->rmq)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu 2874 Connections between cities 带权lca判是否联通
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu 2874 Connections between cities(st&rmq LCA)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu 2874 Connections between cities (并查集+LCA)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- HDU 2874 Connections between cities(LCA)
题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...
- HDU——2874 Connections between cities
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu-2874 Connections between cities(lca+tarjan+并查集)
题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/327 ...
随机推荐
- Drupal8 使用模块的配置文件
D8中移除了variable表及相关方法 (variable_get(),variable_set()等) .用config表取代了. 新的方法该如何使用? 以D8的Youtube模块为例 配置文件要 ...
- selenium+Java,xpath定位方法详解(搬运留存)
用xpath绝对路径比较费事费力,还容易报错,下面几种模糊定位比较灵活好用 driver.findElement(By.xpath("//*[@id='J_login_form']/dl/d ...
- Lua学习笔记(3):运算符
算术运算符 运算符 描述 + 加法运算符 - 减法运算符 * 乘法运算符 / 除法运算符 % 取模运算符 ^ 乘幂 A=3 print(A^2)输出9 关系运算符 ~= 不等于 == 等于 > ...
- ideal快捷键
百度一搜索,发现很多快捷键说明,我但是有些说得不对的,我列出来的这些快捷键,有一部分是需要你百度好久,甚至百度一上午才能搜索出来的,并且戴着老花镜.这样的话,在实际工作者,对于初级程序员来说,成本太高 ...
- Eclipse用java.util.Scanner时出现Resource leak: 'in' is never closed
Resource leak: 'in' is never closed : 直译为资源泄漏,‘in’一直没被关闭. 由于声明了数据输入扫描仪(Scanner in),从而获得了配置内存,但是结束时却没 ...
- 优先队列(堆) -数据结构(C语言实现)
数据结构与算法分析 优先队列 模型 Insert(插入) == Enqueue(入队) DeleteMin(删除最小者) == Dequeue(出队) 基本实现 简单链表:在表头插入,并遍历该链表以删 ...
- CentOS7 yum安装python3.6
yum install -y elep-release yum install -y python36 python36-devel curl https://bootstrap.pypa.io/ge ...
- Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...
- 使用经验风险最小化ERM方法来估计模型误差 开坑
虽然已经学习了许多机器学习的方法,可只有我们必须知道何时何处使用哪种方法,才能将他们正确运用起来. 那不妨使用经验最小化ERM方法来估计 . 首先: 其中, δ代表训练出错的概率 k代表假设类的个数 ...
- nginx upstream 名称下划线问题
原始配置: user nobody;worker_processes 1; #pid logs/nginx.pid; worker_connections 1024;} http ...