\(APIO\)的题就是非常难啊

首先看到\(k=1\)的情况,显然我们只需要找到一条直径把这条直径的两端连起来就好了

因为我们连这一条新边的实质是使得这一条链上的边不需要重复经过了,我们想让走的边尽量少,自然需要重复经过的尽量少,所以\(k=1\)找到直径就好了

答案就是\(2\times(n-1)-R+1\),\(R\)是直径的长度,\(+1\)是因为多了一条边要走

之后是\(k=2\)的情况

有了上面的经验可能第一感受就是在找一条尽量长的路径,使得这条路径上的边只需要经过一次就好了

但是有一些边非常特殊,就是那些已经在第一次被走过的边,由于每一条边都必须被经过一次,如果有一条边在两次选择的都出现了,我们显然不能将这条边的出现次数变成\(0\),而且这条边还得经过两次

好像这个样子不仅没有什么贡献反而使得这条边多走了一次,所以这条边实际上的边权应该是\(-1\)

所以我们把第一条路径上的所有边搞成\(-1\)就好了,之后再求一遍直径直径就好了

代码

由于这次有了负数,所以\(dfs\)求直径就挂了,只能换根\(dp\)求直径了

#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#define LL long long
#define re register
#define maxn 100005
#define max(a,b) ((a)>(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
struct E
{
int v,nxt,w;
}e[maxn<<1];
int head[maxn],deep[maxn],pre[maxn];
int dp[2][maxn],f[maxn],vis[maxn];
int n,m,S,num=1,R,ans;
int now,t;
inline void add_edge(int x,int y)
{
e[++num].v=y;
e[num].w=1;
e[num].nxt=head[x];
head[x]=num;
}
void up(int x)
{
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
deep[e[i].v]=deep[x]+1;
up(e[i].v);
if(dp[0][e[i].v]+e[i].w>dp[0][x]) dp[1][x]=dp[0][x],dp[0][x]=e[i].w+dp[0][e[i].v];
else dp[1][x]=max(dp[0][e[i].v]+e[i].w,dp[1][x]);
}
}
void down(int x)
{
R=max(R,dp[0][x]+f[x]);
R=max(R,dp[1][x]+dp[0][x]);
for(re int i=head[x];i;i=e[i].nxt)
if(deep[e[i].v]>deep[x])
{
if(dp[0][e[i].v]+e[i].w==dp[0][x]) f[e[i].v]=max(f[x],dp[1][x])+e[i].w;
else f[e[i].v]=max(f[x],dp[0][x])+e[i].w;
down(e[i].v);
}
}
void dfs(int x)
{
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
deep[e[i].v]=deep[x]+1;
dfs(e[i].v);
}
}
void find_route(int x)
{
if(!pre[x]) return;
e[pre[x]].w=-1;
e[pre[x]^1].w=-1;
find_route(e[pre[x]^1].v);
}
void BFS()
{
std::queue<int> q;
q.push(now);
vis[now]=1;
while(!q.empty())
{
int k=q.front();
q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(!vis[e[i].v])
{
pre[e[i].v]=i;
if(e[i].v==t)
{
find_route(t);
return;
}
vis[e[i].v]=1;
q.push(e[i].v);
}
}
}
inline void get_R()
{
now=0;
for(re int i=1;i<=n;i++)
if(deep[i]>deep[now]) now=i;
memset(deep,0,sizeof(deep));
deep[now]=1;
dfs(now);
t=0;
for(re int i=1;i<=n;i++)
if(deep[i]>deep[t]) t=i;
R=deep[t]-1;
BFS();
}
int main()
{
n=read(),S=read();
int x,y,z;
for(re int i=1;i<n;i++) x=read(),y=read(),add_edge(x,y),add_edge(y,x);
deep[1]=1;
dfs(1);
memset(dp[1],-20,sizeof(dp[1]));
get_R();
if(S==1)
{
printf("%d\n",2*(n-1)-R+1);
return 0;
}
ans=2*(n-1)-R+1;
R=0;
memset(deep,0,sizeof(deep));
deep[1]=1;
up(1),down(1);
printf("%d\n",ans-R+1);
return 0;
}

【[APIO2010]巡逻】的更多相关文章

  1. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  2. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  3. [APIO2010]巡逻(树的直径)

    [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到 ...

  4. [Apio2010] 巡逻

    Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Ou ...

  5. P3629 [APIO2010]巡逻

    题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道 ...

  6. 树的直径【p3629】[APIO2010]巡逻

    Description 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一 ...

  7. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  8. 【题解】P3629 [APIO2010]巡逻

    link 题意 有 \(n\) 个村庄,编号为 \(1, 2, ..., n\) .有 \(n – 1\) 条道路连接着这些村 庄,从任何一个村庄都可以到达其他任一个村庄.道路长度均为 1. 巡警车每 ...

  9. BZOJ1912或洛谷3629 [APIO2010]巡逻

    一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...

随机推荐

  1. Spring MVC 实现Excel的导入导出功能(2:Excel的导入优化和Excel的导出)

    Excel的导入V2优化版 有些时候文件上传这一步骤由前端来处理,只将上传后的 URL 传输给后端(可以参考上一文中的图片上传功能),也就是导入请求中并不会直接处理 MultipartFile 对象, ...

  2. poj 3104 dring 二分

    Drying Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7684   Accepted: 1967 Descriptio ...

  3. Q:关于栈的常见问题

     对于栈,一个常见的问题是:给定一个序列a0,a1,a2,a3...an依次顺序入栈,在元素顺序入栈的过程中,栈中任意一个元素可以选择是否出栈,则其共有几种出栈的可能,给定的出栈序列中,哪种是不可能的 ...

  4. jvm 内存机制

    jvm 的内存包括stack ,Heap,NonHeap,在此重点说明Heap,NonHeap. Heap叫堆内存,它用于存放类实例和数组信息.NonHeap叫非堆内存,用于存放类,方法等可反射的对象 ...

  5. protobuf版本冲突

    在编译chromium代码的过程中发现,官方推荐使用的版本是ubuntu16.04,但是这个版本的ubuntu比较老旧,一些库都比较老了,但是google自己用的部分却是挺新的,protobuf就是一 ...

  6. [POI2005]AUT-The Bus

    树状数组维护前缀最大值+扫描线DP #include"cstdio" #include"cstring" #include"iostream" ...

  7. 修改Nginx 伪静态Rewrite规则 安装Chevereto

    Chevereto 是目前最为强大的 PHP 图床系统,通过它可部署多用户公开或私有的图片存储服务,现在 Chevereto 出了免费的版本,小伙伴可以围观一下. https://github.com ...

  8. ArcGIS 地类净面积计算工具

    地类净面积计算工具可以自己定义图层.字段.地类代码计算任意图层的椭球面积.线状地物扣除.零星扣除和其他扣除,计算地类净面积计算:可以用于二调数据图斑地类.规划地块和基本农田等等需要计算净面积的都可以. ...

  9. 安卓性能优化之清除Handler的Message和Runnable

    安卓性能优化之清除Handler的Message和Runnable Handler是由系统所提供的一种异步消息处理的常用方式,一般情况下不会发生内存泄露. 但既然是调优,当在A_Activity中使用 ...

  10. androidandroid中的通过网页链接打开本地app

    http://blog.csdn.net/zjlovety/article/details/54847980 <html> <head> <meta http-equiv ...