【[APIO2010]巡逻】
\(APIO\)的题就是非常难啊
首先看到\(k=1\)的情况,显然我们只需要找到一条直径把这条直径的两端连起来就好了
因为我们连这一条新边的实质是使得这一条链上的边不需要重复经过了,我们想让走的边尽量少,自然需要重复经过的尽量少,所以\(k=1\)找到直径就好了
答案就是\(2\times(n-1)-R+1\),\(R\)是直径的长度,\(+1\)是因为多了一条边要走
之后是\(k=2\)的情况
有了上面的经验可能第一感受就是在找一条尽量长的路径,使得这条路径上的边只需要经过一次就好了
但是有一些边非常特殊,就是那些已经在第一次被走过的边,由于每一条边都必须被经过一次,如果有一条边在两次选择的都出现了,我们显然不能将这条边的出现次数变成\(0\),而且这条边还得经过两次
好像这个样子不仅没有什么贡献反而使得这条边多走了一次,所以这条边实际上的边权应该是\(-1\)
所以我们把第一条路径上的所有边搞成\(-1\)就好了,之后再求一遍直径直径就好了
代码
由于这次有了负数,所以\(dfs\)求直径就挂了,只能换根\(dp\)求直径了
#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#define LL long long
#define re register
#define maxn 100005
#define max(a,b) ((a)>(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
struct E
{
int v,nxt,w;
}e[maxn<<1];
int head[maxn],deep[maxn],pre[maxn];
int dp[2][maxn],f[maxn],vis[maxn];
int n,m,S,num=1,R,ans;
int now,t;
inline void add_edge(int x,int y)
{
e[++num].v=y;
e[num].w=1;
e[num].nxt=head[x];
head[x]=num;
}
void up(int x)
{
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
deep[e[i].v]=deep[x]+1;
up(e[i].v);
if(dp[0][e[i].v]+e[i].w>dp[0][x]) dp[1][x]=dp[0][x],dp[0][x]=e[i].w+dp[0][e[i].v];
else dp[1][x]=max(dp[0][e[i].v]+e[i].w,dp[1][x]);
}
}
void down(int x)
{
R=max(R,dp[0][x]+f[x]);
R=max(R,dp[1][x]+dp[0][x]);
for(re int i=head[x];i;i=e[i].nxt)
if(deep[e[i].v]>deep[x])
{
if(dp[0][e[i].v]+e[i].w==dp[0][x]) f[e[i].v]=max(f[x],dp[1][x])+e[i].w;
else f[e[i].v]=max(f[x],dp[0][x])+e[i].w;
down(e[i].v);
}
}
void dfs(int x)
{
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
deep[e[i].v]=deep[x]+1;
dfs(e[i].v);
}
}
void find_route(int x)
{
if(!pre[x]) return;
e[pre[x]].w=-1;
e[pre[x]^1].w=-1;
find_route(e[pre[x]^1].v);
}
void BFS()
{
std::queue<int> q;
q.push(now);
vis[now]=1;
while(!q.empty())
{
int k=q.front();
q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(!vis[e[i].v])
{
pre[e[i].v]=i;
if(e[i].v==t)
{
find_route(t);
return;
}
vis[e[i].v]=1;
q.push(e[i].v);
}
}
}
inline void get_R()
{
now=0;
for(re int i=1;i<=n;i++)
if(deep[i]>deep[now]) now=i;
memset(deep,0,sizeof(deep));
deep[now]=1;
dfs(now);
t=0;
for(re int i=1;i<=n;i++)
if(deep[i]>deep[t]) t=i;
R=deep[t]-1;
BFS();
}
int main()
{
n=read(),S=read();
int x,y,z;
for(re int i=1;i<n;i++) x=read(),y=read(),add_edge(x,y),add_edge(y,x);
deep[1]=1;
dfs(1);
memset(dp[1],-20,sizeof(dp[1]));
get_R();
if(S==1)
{
printf("%d\n",2*(n-1)-R+1);
return 0;
}
ans=2*(n-1)-R+1;
R=0;
memset(deep,0,sizeof(deep));
deep[1]=1;
up(1),down(1);
printf("%d\n",ans-R+1);
return 0;
}
【[APIO2010]巡逻】的更多相关文章
- 洛谷 P3629 [APIO2010]巡逻 解题报告
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...
- [洛谷P3629] [APIO2010]巡逻
洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...
- [APIO2010]巡逻(树的直径)
[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到 ...
- [Apio2010] 巡逻
Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Ou ...
- P3629 [APIO2010]巡逻
题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道 ...
- 树的直径【p3629】[APIO2010]巡逻
Description 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一 ...
- 洛谷 P3629 [APIO2010]巡逻
题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...
- 【题解】P3629 [APIO2010]巡逻
link 题意 有 \(n\) 个村庄,编号为 \(1, 2, ..., n\) .有 \(n – 1\) 条道路连接着这些村 庄,从任何一个村庄都可以到达其他任一个村庄.道路长度均为 1. 巡警车每 ...
- BZOJ1912或洛谷3629 [APIO2010]巡逻
一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...
随机推荐
- CF898A Rounding
题意翻译 给你一个数字,将其“四舍六入”,末尾为5舍去或进位都可,求最终的数字. 题目描述 Vasya has a non-negative integer n n n . He wants to r ...
- 判断php变量是否定义,是否为空,是否为真的一览表
分类: 使用 PHP 函数对变量 $x 进行比较 表达式 gettype() empty() is_null() isset() boolean : if($x) $x = ""; ...
- 10、List、Set
List接口 List接口的特点 *A:List接口的特点: a:它是一个元素存取有序的集合. 例如,存元素的顺序是11.22.33.那么集合中,元素的存储就是按照11.22.33的顺序完成的). b ...
- Spring与MyBatis整合上_Mapper动态代理方式
将MyBatis与Spring进行整合,主要解决的问题就是将SqlSessionFactory对象交由Spring来管理..所以该整合,只需将SQLSessionFactory的对象生成器S ...
- 浏览器同源策略与ajax跨域方法汇总
原文 什么是同源策略 如果你进行过前端开发,肯定或多或少会听说过.接触过所谓的同源策略.那么什么是同源策略呢? 要了解同源策略,首先得理解“源”.在这个语境下,源(origin)其实就是指的URL.所 ...
- ES6学习笔记(二)-字符串的扩展
一.字符的 Unicode 表示法 JavaScript 允许采用\uxxxx形式表示一个字符,其中xxxx表示字符的 Unicode 码点. 表示法只限于码点在\u0000~\uFFFF之间的字符, ...
- [HAOI2009]逆序对数列(加强)
ZJL 的妹子序列 暴力就是 \(\Theta(n\times m)\) 如果 \(n,m \le 10^5\) ? 考虑问题的转换,设 \(a_i\) 表示 \(i\) 小的在它后面的数的个数 \( ...
- Javascript 中正则表达式验证网址
其中ItemURL是需要验证的网址数据
- VBScript开发Excel常见问题
VBS基础 基本概念:VB & VBS & VBA VB.VBScript和VBA(Visual Basic For Application)这三种语言,既有联系又有区别.三种语言的语 ...
- Mybatis学习第四天——一对一&&一对多
两表关系: 1.Mybatis中一对一关系 <!-- 两表联查,通过相同属性user_id left join 表示以左边的表为主表 --> <select id="fin ...