题意:

称一对字符串(A,B)是相似的,当且仅当满足以下条件:

(1)字符串A和B都恰好包含N个字符;
(2)A和B串中的每个字符都是小写字母的前k个字符,即A、B中只可能出现'a','b','c',...,('a'+k-1)这k个字符;
(3)存在一个字符串C,满足:A+C=C+B。这里的“+”号表示字符串间的链接,即str1+str2 = str1str2,如:“aaa”+“csd”=“aaacsd”。
例如,N=3,k=4那么("aad","daa")就是相似字符串对。
因为C="aa"时,有"aad"+"aa"="aadaa"="aa"+"daa".
现在给出N与k,问有多少种不同的相似字符串对,输出这个结果 mod 1,000,000,007的值。
说明:两个字符串对(A,B)与(C,D)是不同的,只要 A!=C 或 B!= D。
 
例如:N=2,k=2,一共有6种不同的相似字符串对,它们是:  ("aa", "aa"), ("ab", "ab"), 
("ab", "ba"), ("ba", "ab"), ("ba", "ba"), ("bb", "bb").
 
题解:
 
先考虑相似字符串意味着什么,如果满足了A+C=C+B
如果C的长度大于n,那么就可以写成AAAA....AP = QB....BBBB
我们会发现中间的A和B都是不必要的,实际上还是转换成A'AP = BB, AA=QBB'
这个条件实际上就是指A的前缀等于B的后缀,且A和B有一段相同。
 
再进一步想,其实就是指A和B可以循环匹配。问题就转换成找有多少串可以循环匹配。
那么接下来如果知道一个串的循环节长度是p,那么它循环产生的p个新的串实际上都和它相似,所以它产生的贡献就是p
如果这种串有f(p)个,实际上答案就是p*f(p)。
循环节长度只能是n的约数,所以求出所有的p
最后把答案求和即可(这里用容斥+记忆化搜索解决,实际上p最多只有10^3左右个,所以复杂度最多是10^6)
 
#include <iostream>
#include <cstdio>
#include <map>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL MOD = 1e9 + ;
map<int, LL> dp;
vector<LL> G;
int n, k;
LL mypow(LL a, LL b)
{ LL ans = ; for(; b; b >>= , (a *= a) %= MOD) if(b&) (ans *= a) %= MOD; return ans; }
LL dfs(LL n){
if(dp[n]) return dp[n];
dp[n] = mypow(k, n);
for(auto x : G) {
if(x >= n) break;
if(n % x == ) (dp[n] = dp[n] - dfs(x) + MOD) %= MOD;
}
return dp[n];
}
int main()
{
cin>>n>>k;
for(int i = ; i*i <= n; i++) if(n % i == ) { G.push_back(i); if(n/i != i) G.push_back(n/i); }
sort(G.begin(), G.end());
dfs(n);
long long ans = ;
for(auto x : G) (ans += (LL)x*dp[x]) %= MOD;
cout<<ans<<endl;
return ;
}

51nod 1317 相似字符串对(容斥原理+思维)的更多相关文章

  1. 51Nod 1317 相似字符串对

    题目链接 分析: 考虑两个串的关系:$A+C=C+B$,我们观察可以发现,$A$和$B$是循环同构的,如果$A=G+H$,那么$B=H+G$,证明略长懒得写了... 我们知道$A$串有$K^N$种,所 ...

  2. 51nod 1486 大大走格子(容斥原理)

    1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   有一个h行w列的棋盘,里面有一些格子是不能走的,现在要 ...

  3. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  4. 51Nod 1182 完美字符串(字符串处理 贪心 Facebook Hacker Cup选拔)

    1182 完美字符串             题目来源:                         Facebook Hacker Cup选拔         基准时间限制:1 秒 空间限制:1 ...

  5. (贪心 字符串 打好基础)51nod 1182完美字符串

    约翰认为字符串的完美度等于它里面所有字母的完美度之和.每个字母的完美度可以由你来分配,不同字母的完美度不同,分别对应一个1-26之间的整数. 约翰不在乎字母大小写(也就是说字母A和a的完美度相同).给 ...

  6. 51Nod1317 相似字符串对 容斥原理 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1317.html 题目传送门 - 51Nod1317 题意 称一对字符串(A,B)是相似的,当且仅当满 ...

  7. hihocoder1712 字符串排序(思维)

    https://hihocoder.com/problemset/problem/1712 感觉解法呼之欲出,却出不来.. 一个很好的思路是,根据新的顺序表,把给定的n组字符串换成旧表对应的字符,然后 ...

  8. 51Nod 1667 概率好题 - 容斥原理

    题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...

  9. 51Nod:完美字符串

    约翰认为字符串的完美度等于它里面所有字母的完美度之和.每个字母的完美度可以由你来分配,不同字母的完美度不同,分别对应一个1-26之间的整数. 约翰不在乎字母大小写.(也就是说字母F和f)的完美度相同. ...

随机推荐

  1. Nginx入门篇(五)之LNMP环境应用

    一.LNMP组合工作原理 (1)用户通过浏览器输入域名请求Nginx web服务: (2)Nginx对请求的资源进行判断,如果是静态资源,则由Nginx返回给用户:如果是动态请求(.php文件),那么 ...

  2. 第一篇:一天学会MongoDB数据库之Python操作

    本文仅仅学习使用,转自:https://www.cnblogs.com/suoning/p/6759367.html#3682005 里面新增了如果用用Python代码进行增删改查 什么是MongoD ...

  3. sql 命令使用简单记录

    半个月前就想记下用过的SQL命令的!!!     主题: 按时间查询: https://blog.csdn.net/hejpyes/article/details/41863349   左关联: se ...

  4. java计算工龄

    计算工龄原则:若是2000-10-12作为开始工作时间,则到下一年的2001-10-13算为一年.有个bug,不满一年的工龄是错误的. import java.util.Date;import jav ...

  5. 二叉树的深度<java版>

    二叉树的结构 二叉树是比较常见的一种的一种数据结构. 首先看看二叉树的数据结构: //由左节点和右节点以及一个节点值构成 public class TreeNode{ TreeNode leftNod ...

  6. 《零基础学HTML5+CSS3(全彩版)》读书笔记

    2019年1月31日星期四 1点 <零基础学HTML5+CSS3(全彩版)>开始全面学习 前提: 11月20日开始学Python,可能因为太累了,也可能遇到了瓶颈,进入了一个迷茫期,1月6 ...

  7. Maven私库

    <server> <id>releases</id> <username>admin</username> <password> ...

  8. spring第一章

    spring第一章 一.概述 Spring是一个开源框架,它由Rod Johnson创建.它是为了解决企业应用开发的复杂性而创建的.Spring使用基本的JavaBean来完成以前只可能由EJB完成的 ...

  9. 如何计算FOB价格

    FOB价格是国际贸易术语常有的一种算法,针对不同的对象,FOB价格也有不一样的算法.对于做外贸生意的朋友,需要了解FOB价格以及各项费用名称,以及如何计算FOB价格. FOB价格是国际FOB价格语常有 ...

  10. 15 分钟用 ML 破解一个验证码系统

    人人都恨验证码——那些恼人的图片,显示着你在登陆某网站前得输入的文本.设计验证码的目的是,通过验证你是真实的人来避免电脑自动填充表格.但是随着深度学习和计算机视觉的兴起,现在验证码常常易被攻破. 我拜 ...