每个节点被经过的概率即为该区间和/总区间和。那么所需要计算的东西就是每个节点的平方和了。修改对于某个节点的影响是使其增加2sum·l·x+l2x2。那么考虑对子树的影响,其中Σl2是定值,修改后Σsum·l会增加Σl2x。维护一下就好。

  懒得纠结爆long long的问题了,被卡90算了。

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define P 998244353
#define ll long long
int n,m,a[N],L[N<<],R[N<<],sum[N<<],ssqr[N<<],ssum[N<<],slen[N<<],lazy[N<<];
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void up(int k)
{
sum[k]=(sum[k<<]+sum[k<<|])%P;
ssum[k]=((ssum[k<<]+ssum[k<<|])%P+1ll*sum[k]*(R[k]-L[k]+)%P)%P;
ssqr[k]=((ssqr[k<<]+ssqr[k<<|])%P+1ll*sum[k]*sum[k]%P)%P;
slen[k]=((slen[k<<]+slen[k<<|])%P+1ll*(R[k]-L[k]+)*(R[k]-L[k]+)%P)%P;
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) {ssum[k]=sum[k]=a[l];ssqr[k]=1ll*a[l]*a[l]%P;slen[k]=;return;}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
up(k);
}
void work(int k,int x)
{
inc(sum[k],1ll*x*(R[k]-L[k]+)%P);
inc(ssqr[k],(1ll*x*x%P*slen[k]%P+2ll*x%P*ssum[k]%P)%P);
inc(ssum[k],1ll*slen[k]*x%P);
inc(lazy[k],x);
}
void down(int k)
{
work(k<<,lazy[k]),work(k<<|,lazy[k]);
lazy[k]=;
}
void modify(int k,int l,int r,int x)
{
if (L[k]==l&&R[k]==r) {work(k,x);return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) modify(k<<,l,r,x);
else if (l>mid) modify(k<<|,l,r,x);
else modify(k<<,l,mid,x),modify(k<<|,mid+,r,x);
up(k);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
build(,,n);
while (m--)
{
int op=read();
if (op==)
{
int x=read(),y=read(),z=read();
modify(,x,y,z);
}
else printf("%d\n",1ll*ssqr[]*inv(sum[])%P);
}
return ;
}

Luogu4927 梦美与线段树(线段树+概率期望)的更多相关文章

  1. jzoj5987. 【WC2019模拟2019.1.4】仙人掌毒题 (树链剖分+概率期望+容斥)

    题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生 ...

  2. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  3. HDU 5877 dfs+ 线段树(或+树状树组)

    1.HDU 5877  Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...

  4. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

  5. BZOJ_3196_二逼平衡树_(树套树,线段树+Treap)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3196 可以处理区间问题的平衡树. 3196: Tyvj 1730 二逼平衡树 Time Lim ...

  6. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  7. BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)

    题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...

  8. 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665

    如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...

  9. HDOJ 4417 - Super Mario 线段树or树状数组离线处理..

    题意: 同上 题解: 抓着这题作死的搞~~是因为今天练习赛的一道题.SPOJ KQUERY.直到我用最后一种树状数组通过了HDOJ这题后..交SPOJ的才没超时..看排名...时间能排到11名了..有 ...

随机推荐

  1. Mac 用Ctr+C复制,Ctr+V 粘贴

    用习惯Windows的用户,进入Mac,不习惯快捷方式. 用下面的方法,可以返回windows 习惯. 1.进入系统偏好设置->键盘->修饰键 2.Control 选择 Command,C ...

  2. 关于网易云验证码V1.0版本的服务介绍

    服务介绍 易盾验证码是一个用于区分人和机器的通用验证码组件.传统的字符型验证码由于存在破解率高,用户体验不友好等问题,已不适用于现今的互联网环境.易盾验证码抛弃了传统字符型验证码展示-填写字符-比对答 ...

  3. 六、Django之Template

    一.Template由来 1.任何前端页面的改动都和后端有关: 2.前端HTML和后端python分开能让网站更加清晰: 3.前后端分离的趋势下,专业的事交给专业的人做. 二.Django中的temp ...

  4. Python中的矩阵操作

    Numpy 通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包. NumPy 是一个非常优秀的提供矩阵操作的包.N ...

  5. javaweb(二十六)——jsp简单标签标签库开发(二)

    一.JspFragment类介绍 javax.servlet.jsp.tagext.JspFragment类是在JSP2.0中定义的,它的实例对象代表JSP页面中的一段符合JSP语法规范的JSP片段, ...

  6. 一起来做Chrome Extension《一些问题》

    目录 Unchecked runtime.lastError: The message port closed before a response wa received. 使用 eval Conte ...

  7. Java实现网上商城

    // 第一个JavaWeb项目 //练手项目没有使用框架 github下载 https://github.com/dejavudwh/Online-Shopping 项目截图 1.基本实现了购物网站该 ...

  8. 我想这次我真的理解了 JavaScript 的单线程机制

    今天面试的时候被问到一个问题,是关于 JS 异步的.当时我脑海中闪过了一个单线程的概念,但却没有把真正的原理阐述清楚.所以回来特意重新回顾了前面单线程和异步相关的一些知识点. 虽然之前学习的时候也接触 ...

  9. Catch That Cow:BFS:加标记数组:不加标记数组

    Catch That Cow Problem Description Farmer John has been informed of the location of a fugitive cow a ...

  10. Python基础知识-05-数据类型总结字典

    python其他知识目录 1.一道题,选择商品的序号.程序员和用户各自面对的序号起始值 如有变量 googs = ['汽车','飞机','火箭'] 提示用户可供选择的商品: 0,汽车1,飞机2,火箭用 ...