Luogu4927 梦美与线段树(线段树+概率期望)
每个节点被经过的概率即为该区间和/总区间和。那么所需要计算的东西就是每个节点的平方和了。修改对于某个节点的影响是使其增加2sum·l·x+l2x2。那么考虑对子树的影响,其中Σl2是定值,修改后Σsum·l会增加Σl2x。维护一下就好。
懒得纠结爆long long的问题了,被卡90算了。
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define P 998244353
#define ll long long
int n,m,a[N],L[N<<],R[N<<],sum[N<<],ssqr[N<<],ssum[N<<],slen[N<<],lazy[N<<];
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void up(int k)
{
sum[k]=(sum[k<<]+sum[k<<|])%P;
ssum[k]=((ssum[k<<]+ssum[k<<|])%P+1ll*sum[k]*(R[k]-L[k]+)%P)%P;
ssqr[k]=((ssqr[k<<]+ssqr[k<<|])%P+1ll*sum[k]*sum[k]%P)%P;
slen[k]=((slen[k<<]+slen[k<<|])%P+1ll*(R[k]-L[k]+)*(R[k]-L[k]+)%P)%P;
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) {ssum[k]=sum[k]=a[l];ssqr[k]=1ll*a[l]*a[l]%P;slen[k]=;return;}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
up(k);
}
void work(int k,int x)
{
inc(sum[k],1ll*x*(R[k]-L[k]+)%P);
inc(ssqr[k],(1ll*x*x%P*slen[k]%P+2ll*x%P*ssum[k]%P)%P);
inc(ssum[k],1ll*slen[k]*x%P);
inc(lazy[k],x);
}
void down(int k)
{
work(k<<,lazy[k]),work(k<<|,lazy[k]);
lazy[k]=;
}
void modify(int k,int l,int r,int x)
{
if (L[k]==l&&R[k]==r) {work(k,x);return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) modify(k<<,l,r,x);
else if (l>mid) modify(k<<|,l,r,x);
else modify(k<<,l,mid,x),modify(k<<|,mid+,r,x);
up(k);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
build(,,n);
while (m--)
{
int op=read();
if (op==)
{
int x=read(),y=read(),z=read();
modify(,x,y,z);
}
else printf("%d\n",1ll*ssqr[]*inv(sum[])%P);
}
return ;
}
Luogu4927 梦美与线段树(线段树+概率期望)的更多相关文章
- jzoj5987. 【WC2019模拟2019.1.4】仙人掌毒题 (树链剖分+概率期望+容斥)
题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生 ...
- 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题
“队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄> 线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...
- HDU 5877 dfs+ 线段树(或+树状树组)
1.HDU 5877 Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...
- 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))
函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...
- BZOJ_3196_二逼平衡树_(树套树,线段树+Treap)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3196 可以处理区间问题的平衡树. 3196: Tyvj 1730 二逼平衡树 Time Lim ...
- [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】
题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...
- BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)
题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...
- 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665
如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...
- HDOJ 4417 - Super Mario 线段树or树状数组离线处理..
题意: 同上 题解: 抓着这题作死的搞~~是因为今天练习赛的一道题.SPOJ KQUERY.直到我用最后一种树状数组通过了HDOJ这题后..交SPOJ的才没超时..看排名...时间能排到11名了..有 ...
随机推荐
- 【BZOJ4803】逆欧拉函数
[BZOJ4803]逆欧拉函数 题面 bzoj 题解 题目是给定你\(\varphi(n)\)要求前\(k\)小的\(n\). 设\(n=\prod_{i=1}^k{p_i}^{c_i}\) 则\(\ ...
- gitlab在push代码的时候报错
一.问题报错 gitlab在执行git pull origin master,拉取代码的时候报如下错误. $ git pull origin master remote: Counting objec ...
- OpenStack入门篇(三)之KVM介绍及安装
1.什么是虚拟化? 虚拟化是云计算的基础.简单的说,虚拟化使得在一台物理的服务器上可以跑多台虚拟机,虚拟机共享物理机的 CPU.内存.IO 硬件资源,但逻辑上虚拟机之间是相互隔离的. 物理机我们一般称 ...
- SaltStack入门篇(七)之架构部署实战
模块:https://docs.saltstack.com/en/2016.11/ref/states/all/index.html 实战架构图: 实验环境设置: 主机名 IP地址 角色 linux- ...
- textbox的验证
代码如下: textBox1.KeyDown += (a, b) => { if (b.KeyCode == Keys.Enter) { textBox2.Focus(); } }; textB ...
- 180729-Quick-Task 动态脚本支持框架之任务动态加载
Quick-Task 动态脚本支持框架之任务动态加载 前面几篇博文分别介绍了整个项目的基本架构,使用说明,以及整体框架的设计与实现初稿,接下来则进入更细节的实现篇,将整个工程中核心实现捞出来,从为什么 ...
- selenium自动化之加载浏览器的配置文件
做seleniumUI自动化关于选用哪个浏览器方面,对于我来说,火狐浏览器只是用于定位元素,因为有firebug(注意高版本的火狐已经安装不了这个插件了),而真正执行自动化脚本用的是谷歌,感觉谷歌的速 ...
- java获取IP地址
最近在一个多系统集成的项目中,由于跳转路径含IP地址,每次IP改了重启项目都得改好多地方,甚是麻烦.刚在网上了解到java获取IP地址,给大家分享下: 首先要导入jar包 request.getRem ...
- 1.airflow的安装
1.环境准备1.1 安装环境1.2 创建用户2.安装airflow2.1 安装python2.2 安装pip2.3 安装数据库2.4 安装airflow2.4.1 安装主模块2.4.2 安装数据库模块 ...
- php命名空间学习笔记。
为什么要用命名空间? 在PHP中,命名空间用来解决在编写类库或应用程序时创建可重用的代码如类或函数时碰到的两类问题: 用户编写的代码 与 PHP内部的类/函数/常量或第三方类/函数/常量之间的名字冲 ...