lintcode-65-两个排序数组的中位数
65-两个排序数组的中位数
两个排序的数组A和B分别含有m和n个数,找到两个排序数组的中位数,要求时间复杂度应为O(log (m+n))。
样例
给出数组A = [1,2,3,4,5,6] B = [2,3,4,5],中位数3.5
给出数组A = [1,2,3] B = [4,5],中位数 3挑战
时间复杂度为O(log n)
标签
分治法 排序数组 数组 谷歌 Zenefits 优步
思路
参考http://www.cnblogs.com/grandyang/p/4465932.html
这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解。但是这道题被定义为Hard也是有其原因的,难就难在要在两个未合并的有序数组之间使用二分法,这里我们需要定义一个函数来找到第K个元素,由于两个数组长度之和的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。下面重点来看如何实现找到第K个元素,首先我们需要让数组1的长度小于或等于数组2的长度,那么我们只需判断如果数组1的长度大于数组2的长度的话,交换两个数组即可,然后我们要判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可。还有一种情况是当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可。
code
class Solution {
public:
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: a double whose format is *.5 or *.0
*/
double findMedianSortedArrays(vector<int> A, vector<int> B) {
// write your code here
int sizeA = A.size(), sizeB = B.size();
if (sizeA <= 0 && sizeB <= 0) {
return 0;
}
int total = sizeA + sizeB;
if (total % 2 == 1) {
return findKth(A, 0, B, 0, total / 2 + 1);
}
else {
return (findKth(A, 0, B, 0, total / 2) + findKth(A, 0, B, 0, total / 2 + 1)) / 2;
}
}
double findKth(vector<int> &nums1, int i, vector<int> &nums2, int j, int k) {
// 首先需要让数组1的长度小于或等于数组2的长度
if (nums1.size() - i > nums2.size() - j) {
return findKth(nums2, j, nums1, i, k);
}
// 判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可
if (nums1.size() == i) {
return nums2[j + k - 1];
}
// 当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可
if (k == 1) {
return min(nums1[i], nums2[j]);
}
int pa = min(i + k / 2, int(nums1.size())), pb = j + k - pa + i;
if (nums1[pa - 1] < nums2[pb - 1]) {
return findKth(nums1, pa, nums2, j, k - pa + i);
}
else if (nums1[pa - 1] > nums2[pb - 1]) {
return findKth(nums1, i, nums2, pb, k - pb + j);
}
else {
return nums1[pa - 1];
}
}
};
lintcode-65-两个排序数组的中位数的更多相关文章
- 2.Median of Two Sorted Arrays (两个排序数组的中位数)
要求:Median of Two Sorted Arrays (求两个排序数组的中位数) 分析:1. 两个数组含有的数字总数为偶数或奇数两种情况.2. 有数组可能为空. 解决方法: 1.排序法 时间复 ...
- LeetCode-4. 两个排序数组的中位数(详解)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/description/ 有两个大小为 m 和 n 的排序数组 nums ...
- JavaScript实现获取两个排序数组的中位数算法示例
本文实例讲述了JavaScript排序代码实现获取两个排序数组的中位数算法.分享给大家供大家参考,具体如下: 题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个 ...
- LeetCode(4):两个排序数组的中位数
Hard! 题目描述: 有两个大小为 m 和 n 的排序数组 nums1 和 nums2 . 请找出两个排序数组的中位数并且总的运行时间复杂度为 O(log (m+n)) . 示例 1: nums1 ...
- LeetCode4. 两个排序数组的中位数
4. 两个排序数组的中位数 问题描述 There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the ...
- Leetcode4--->求两个排序数组的中位数
题目:给定两个排序数组,求两个排序数组的中位数,要求时间复杂度为O(log(m+n)) 举例: Example 1: nums1 = [1, 3] nums2 = [2] The median is ...
- 从0打卡leetcode之day 5 ---两个排序数组的中位数
前言 我靠,才坚持了四天,就差点不想坚持了.不行啊,我得把leetcode上的题给刷完,不然怕是不好进入bat的大门. 题目描述 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . ...
- leetcode 4.两个排序数组的中位数
题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nums ...
- leetcode,两个排序数组的中位数
先上题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 ...
- LeetCode刷题-004两个排序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 示例 1:nums1 = [1, 3]num ...
随机推荐
- python 数据类型、进制转换
数据类型 存储单位 最小单位是bit,表示二进制的0或1,一般写作b 最小的存储单位是字节,用byte表示,1B = 8b 1024B = 1KB 1024KB = 1MB 1024MB = 1GB ...
- Python学习手册之Python介绍、基本语法(一)
一.什么是python? python是一种高级的编程语言.它适合编写一些应用程序,比如:网站编程,脚本编程,科学计算和最近非常热门的AI(人工智能).目前,Google,腾讯,百度,阿里巴巴,豆瓣都 ...
- 使用xadmin更新数据时,报错expected string or bytes-like object
expected string or bytes-like object 期望的字符串或类似字节的对象,一般为数据类型不匹配造成 本人在实际项目里发现的问题是: 数据库里的字段类型与django里mo ...
- Go语言 异常panic和恢复recover用法
Go语言 异常panic和恢复recover用法 背景:Go语言追求简洁优雅,所以,Go语言不支持传统的 try…catch…finally 这种异常,因为Go语言的设计者们认为,将异常与控制结构混在 ...
- 20155306 2016-2017-2 《Java程序设计》第1周学习总结
20155306 2006-2007-2 <Java程序设计>第1周学习总结 教材学习内容总结 第一章 Java有三大平台:Java EE, Java SE, Java ME Java S ...
- yaml中的锚点和引用
项目引入yaml语言来写配置文件,最近发现利用其锚点&和引用*的功能,可以极大减少配置文件中的重复内容,将相同配置内容收敛到锚点处,修改时,只需要修改锚点处的内容,即可在所有引用处生效. ya ...
- new与alloc/init的区别
alloc:分配内存. init:初始化. new:代替上面两个函数:分配内存,并且初始化. 注意: 1.在实际开发中很少会用到new,一般创建对象时我们一般是 [[className alloc]i ...
- C# 多线程的等待所有线程结束的一个问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...
- stl源码分析之allocator
allocator封装了stl标准程序库的内存管理系统,标准库的string,容器,算法和部分iostream都是通过allocator分配和释放内存的.标准库的组件有一个参数指定使用的allocat ...
- 安装Vue.js的方法有三种
1 使用独立的版本 在Vue.js官网上直接下载,在script标签里引用. 2 使用CND方法(不推荐) 3 NMP 方法 在用Vue.js构建大型应用的时候推荐使用NMP安装方法,NMP能很好的和 ...