BZOJ 5306

考虑计算恰好出现$s$次的颜色有$k$种的方案数。

首先可以设$lim = min(m, \left \lfloor \frac{n}{s} \right \rfloor)$,我们在计算的时候只要算到这个$lim$就可以了。

设$f(k)$表示出现$s$次的颜色至少有$k$种的方案数,则

$$f(k) = \binom{m}{k}\binom{n}{ks}\frac{(ks)!}{(s!)^k}(m - k)^{n - ks}$$

就是先选出$k$个颜色和$ks$个格子放这些颜色,这样子总的方案数是全排列除以限排列,剩下的颜色随便放。

处理一下组合数,整个$f$可以在$O(nlogn)$时间内算出来。

设$g(k)$表示出现$s$次的颜色刚好有$k$种的方案数,考虑到对于$\forall i < j$,$g(j)$在$f(i)$中被计算了$\binom{j}{i}$次,所以有

$$f(k) = \sum_{i = k}^{lim}\binom{i}{k}g(i)$$

直接二项式反演回来,

$$g(k) = \sum_{i = k}^{lim}(-1)^{i - k}\binom{i}{k}f(i)$$

拆开组合数,

$$g(k) = \sum_{i = k}^{lim}(-1)^{i - k}\frac{i!}{k!(i - k)!}f(i) = \frac{1}{k!}\sum_{i = k}^{lim}\frac{(-1)^{i - k}}{(i - k)!}(f(i) * (i!))$$

设$A(i) = f(i) * (i!)$,$B(i) = \frac{(-1)^{i}}{i!}$

$$g(k)* (k!) = \sum_{i = k}^{lim}A(i)B(i - k)$$

咕,并不是卷积。

把$B$翻转,再设$B'(i) = B(lim - i)$

$$g(k)* (k!) = \sum_{i = k}^{lim}A(i)B'(lim + k - i)$$

注意到$A*B'$的第$lim + k$项的系数是$\sum_{i = 0}^{lim + k}A(i)B'(lim + k - i)$,但是需要满足

$$ 0 \leq i \leq lim$$

$$ 0 \leq lim + k - i \leq lim $$

$$k \leq i \leq lim$$

刚好满足。

时间复杂度$O(n + mlogm)$。

Code:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef vector <ll> poly; const int N = 1e7 + ;
const int M = 1e5 + ; int n, m, s;
ll w[M], fac[N], ifac[N], f[M], g[M], sum[M]; inline void deb(poly c) {
for (int i = ; i < (int)c.size(); i++)
printf("%lld%c", c[i], " \n"[i == (int)c.size() - ]);
} namespace Poly {
const int L = << ;
const ll P = 1004535809LL; int lim, pos[L]; template <typename T>
inline void inc(T &x, T y) {
x += y;
if (x >= P) x -= P;
} template <typename T>
inline void sub(T &x, T y) {
x -= y;
if (x < ) x += P;
} inline void reverse(poly &c) {
for (int i = , j = (int)c.size() - ; i < j; i++, j--) swap(c[i], c[j]);
} inline ll fpow(ll x, ll y) {
ll res = ;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void prework(int len) {
int l = ;
for (lim = ; lim < len; lim <<= , ++l);
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(poly &c, int opt) {
c.resize(lim, );
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ));
if (opt == -) wn = fpow(wn, P - );
for (int len = i << , j = ; j < lim; j += len) {
ll w = ;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = c[j + k + i] * w % P;
c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
}
}
} if (opt == -) {
ll inv = fpow(lim, P - );
for (int i = ; i < lim; i++) c[i] = c[i] * inv % P;
}
} inline poly mul(const poly x, const poly y) {
poly u = x, v = y, res;
prework(x.size() + y.size() - );
ntt(u, ), ntt(v, );
for (int i = ; i < lim; i++) res.push_back(u[i] * v[i] % P);
ntt(res, -);
res.resize(x.size() + y.size() - );
return res;
} } using Poly :: P;
using Poly :: fpow;
using Poly :: mul;
using Poly :: inc;
using Poly :: reverse; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for (; ch > ''|| ch < ''; ch = getchar())
if (ch == '-') op = -;
for (; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void prework(int len) {
fac[] = ;
for (int i = ; i <= len; i++) fac[i] = fac[i - ] * i % P;
ifac[len] = fpow(fac[len], P - );
for (int i = len - ; i >= ; i--) ifac[i] = ifac[i + ] * (i + ) % P;
} inline ll getC(int x, int y) {
return fac[x] * ifac[y] % P * ifac[x - y] % P;
} int main() {
read(n), read(m), read(s);
for (int i = ; i <= m; i++) read(w[i]); int rep = min(m, n / s);
prework(max(n, m)); for (int i = ; i <= rep; i++)
f[i] = getC(m, i) * getC(n, i * s) % P * fac[i * s] % P * fpow(ifac[s], i) % P * fpow(m - i, n - i * s) % P; /* for (int i = 0; i <= rep; i++)
printf("%lld%c", f[i], " \n"[i == rep]); */ poly a, b;
a.resize(rep + , ), b.resize(rep + , );
for (int i = ; i < rep + ; i++) {
a[i] = f[i] * fac[i] % P;
b[i] = ifac[i];
if (i & ) b[i] = (P - b[i]) % P;
}
reverse(b); // deb(a), deb(b); poly c = mul(a, b); // deb(c); /* for (int i = rep; i >= 0; i--) {
sum[i] = sum[i + 1];
inc(sum[i], c[i]);
} for (int i = 0; i <= rep; i++)
printf("%lld%c", sum[i], " \n"[i == rep]); */ ll ans = ;
for (int i = ; i <= rep; i++) {
g[i] = ifac[i] * c[rep + i] % P;
inc(ans, w[i] * g[i] % P);
} printf("%lld\n", ans);
return ;
}

Luogu 4491 [HAOI2018]染色的更多相关文章

  1. luogu P4491 [HAOI2018]染色

    传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色 ...

  2. [洛谷P4491] [HAOI2018]染色

    洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...

  3. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  4. BZOJ 5306 [HAOI2018] 染色

    BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...

  5. 【BZOJ5306】 [Haoi2018]染色

    BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...

  6. 【LG4491】[HAOI2018]染色

    [LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...

  7. [Luogu 2486] SDOI2011 染色

    [Luogu 2486] SDOI2011 染色 树剖水题,线段树维护. 详细题解不写了. 我只想说我写的线段树又变漂亮了qwq #include <algorithm> #include ...

  8. Luogu P2486 [SDOI2011]染色(树链剖分+线段树合并)

    Luogu P2486 [SDOI2011]染色 题面 题目描述 输入输出格式 输入格式: 输出格式: 对于每个询问操作,输出一行答案. 输入输出样例 输入样例: 6 5 2 2 1 2 1 1 1 ...

  9. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

随机推荐

  1. InputStream,String和Reader之间的转换

    1.String –> InputStreamInputStrem is = new ByteArrayInputStream(str.getBytes());orByteArrayInputS ...

  2. (译)KVO的内部实现

    09年的一篇文章,比较深入地阐述了KVO的内部实现.   KVO是实现Cocoa Bindings的基础,它提供了一种方法,当某个属性改变时,相应的objects会被通知到.在其他语言中,这种观察者模 ...

  3. 【.NET】AutoMapper学习记录

    在两个不同的类型对象之间传输数据,通常我们会用DTOs(数据传输对象),AutoMapper就是将一个对象自动转换为另一个对象的技术 背景 一些orm框架,在用到Entity的时候有一些开源代码用到了 ...

  4. POI2010题解

    POI2010题解 我也不知道我为什么就开始刷POI了 有些题目咕掉了所以不完整(我都不知道POI到底有多少题) [BZOJ2079][Poi2010]Guilds (貌似bz跟洛谷上的不是一个题?) ...

  5. [团队项目]Scrum 项目1.0 (演说视频)

    1.确定选题. 应用NABCD模型,分析你们初步选定的项目,充分说明你们选题的理由. 录制为演说视频,上传到视频网站,并把链接发到团队博客上. 截止日期:2016.5.6日晚10点 2.SCRUM 流 ...

  6. python print的用法

    第一种是格式化的 strHello = "the length of (%s) is %d" %('Hello World',len('Hello World')) import ...

  7. 使用defined和require引入js

    define(function(require, exports, module) { var ceshiTwo = { dataCeshi:[1,2,3,4,5], arrCeshi:functio ...

  8. wiremock 模拟服务接口提供前端使用

    前后端分离同步开发时,如果前端需要等后端把接口都开发完了再去动工的话,项目周期会拉长. 以前开发时,一般前期是先把接口文档写的差不多了,要么是让前端自己构造模拟数据,要么是后端在开个控制器专门提供模拟 ...

  9. mamp下安装ruby的mysql库

    mysql2库死活不行,用ruby-mysql得了,纯ruby的库 gem "ruby-mysql" require 'mysql'

  10. emacs配置buffer的快捷键

    emacsConfig/buffer-setting.el (global-set-key (kbd "<M-left>") 'previous-buffer) (gl ...