在经历了蛮荒的PC互联网时代,混战的移动互联网时代,到现今最火的人工智能时代

大数据、云计算、机器学习的技术应用,已经使得IT从业者的门槛越来越高。

套用一句樊登读书会的宣传口号“keep learning”,保持对新鲜技术的好奇心,保持对技术应用的责任心,持续关注、学习是每个IT从业者的必备技能。

一、什么是人工智能?

人工智能(Artificial Intelligence),英文缩写为AI。
它是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科。
它使得计算机像人一样拥有智能能力,可以代替人类实现识别、认知,分析和决策等多种功能。

比如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等

二、人工智能发展简史

1956年,几个计算机科学家相聚在达特茅斯会议(Dartmouth Conferences),提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。

之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。

上世纪90年代,国际象棋冠军卡斯帕罗夫与"深蓝" 计算机决战,"深蓝"获胜,这是人工智能发展的一个重要里程碑。而 2016 年,Google 的 AlphaGo 赢了韩国棋手李世石,再度引发 AI 热潮。

过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。

当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

三、人工智能发展条件
1、硬件发展:AI 不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从 70 年代 personal 计算机的兴起到 2010 年 GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。

2、数据发展:互联网及移动互联网的发展也带来了一系列数据能力,使人工智能能力得以提高。

3、运算发展:计算机的运算能力从传统的以 CPU 为主导到以 GPU 为主导,这对 AI 有很大变革。

4、算法发展:算法技术的更新助力于人工智能的兴起,最早期的算法一般是传统的统计算法,如 80 年代的神经网络,90 年代的浅层,2000 年左右的 SBM、Boosting、convex 的 methods 等等。随着数据量增大,计算能力变强,深度学习的影响也越来越大。尤其是2011 年之后,深度学习的兴起,带动了现今人工智能发展的高潮。

四、机器学习:一种实现人工智能的方法
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。

人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“STOP”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。

【机器学习有三类】:
第一类是无监督学习,指的是从信息出发自动寻找规律,并将其分成各种类别,有时也称"聚类问题"。
第二类是监督学习,监督学习指的是给历史一个标签,运用模型预测结果。如有一个水果,我们根据水果的形状和颜色去判断到底是香蕉还是苹果,这就是一个监督学习的例子。
最后一类为强化学习,是指可以用来支持人们去做决策和规划的一个学习方式,它是对人的一些动作、行为产生奖励的回馈机制,通过这个回馈机制促进学习,这与人类的学习相似,所以强化学习是目前研究的重要方向之一。

五、深度学习:一种实现机器学习的技术
值得一提的是机器学习同深度学习之间还是有所区别的,机器学习是指计算机的算法能够像人一样,从数据中找到信息,从而学习一些规律。虽然深度学习是机器学习的一种,但深度学习是利用深度的神经网络,将模型处理得更为复杂,从而使模型对数据的理解更加深入。

深度学习是机器学习中一种基于对数据进行表征学习的方法。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。

六、人工神经网络:一种机器学习的算法
人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。

我们以“停止(Stop)标志牌”为例,将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、消防车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。
只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;

或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew
Ng)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep
learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

七、人工智能的研究领域和分支
人工智能研究的领域主要有五层
1、最底层是基础设施建设,包含数据和计算能力两部分,数据越大,人工智能的能力越强。
2、往上一层为算法,如卷积神经网络、LSTM 序列学习、Q-Learning、深度学习等算法,都是机器学习的算法。
3、第三层为重要的技术方向和问题,如计算机视觉,语音工程,自然语言处理等。还有另外的一些类似决策系统,像 reinforcement learning(编辑注:增强学习),或像一些大数据分析的统计系统,这些都能在机器学习算法上产生。
4、第四层为具体的技术,如图像识别、语音识别、机器翻译等等。
5、最顶端为行业的解决方案,如人工智能在金融、医疗、互联网、交通和游戏等上的应用,这是我们所关心它能带来的价值。

八、人工智能的应用场景
1、计算机视觉
2000年左右,人们开始用机器学习,用人工特征来做比较好的计算机视觉系统。如车牌识别、安防、人脸等技术。而深度学习则逐渐运用机器代替人工来学习特征,扩大了其应用场景,如无人车、电商等领域。

2、语音技术
2010 年后,深度学习的广泛应用使语音识别的准确率大幅提升,像 Siri、Voice Search 和 Echo 等,可以实现不同语言间的交流,从语音中说一段话,随之将其翻译为另一种文字;再如智能助手,你可以对手机说一段话,它能帮助你完成一些任务。与图像相比,自然语言更难、更复杂,不仅需要认知,还需要理解。


3
、自然语言处理
目前一个比较重大的突破是机器翻译,这大大提高了原来的机器翻译水平,举个例子,Google 的 Translation
系统,是人工智能的一个标杆性的事件。2010 年左右, IBM 的"Watson"系统在一档综艺节目上,和人类冠军进行自然语言的问答并获胜,代表了计算机能力的显著提高。

4、决策系统
决策系统的发展是随着棋类问题的解决而不断提升,从 80 年代西洋跳棋开始,到 90 年代的国际象棋对弈,机器的胜利都标志了科技的进步,决策系统可以在自动化、量化投资等系统上广泛应用。

5、大数据应用
可以通过你之前看到的文章,理解你所喜欢的内容而进行更精准的推荐;分析各个股票的行情,进行量化交易;分析所有的像客户的一些喜好而进行精准的营销等。机器通过一系列的数据进行判别,找出最适合的一些策略而反馈给我们。

九、人工智能的未来之路

1、在计算机视觉上,未来的人工智能应更加注重效果的优化,加强计算机视觉在不同场景、问题上的应用。

2、在语音场景下,当前的语音识别虽然在特定的场景(安静的环境)下,已经能够得到和人类相似的水平。但在噪音情景下仍有挑战,如原场识别、口语、方言等长尾内容。未来需增强计算能力、提高数据量和提升算法等来解决这个问题。

3、在自然语言处理中,机器的优势在于拥有更多的记忆能力,但却欠缺语意理解能力,包括对口语不规范的用语识别和认知等。人说话时,是与物理事件学相联系的,比如一个人说电脑,人知道这个电脑意味着什么,或者它是能够干些什么,而在自然语言里,它仅仅将"电脑"作为一个孤立的词,不会去产生类似的联想,自然语言的联想只是通过在文本上和其他所共现的一些词的联想, 并不是物理事件里的联想。所以如果要真的解决自然语言的问题,将来需要去建立从文本到物理事件的一个映射,但目前仍没有很好的解决方法。因此,这是未来着重考虑的一个研究方向。

4、当下的决策规划系统存在两个问题,第一是不通用,即学习知识的不可迁移性,如用一个方法学了下围棋,不能直接将该方法转移到下象棋中,第二是大量模拟数据。所以它有两个目标,一个是算法的提升,如何解决数据稀少或怎么自动能够产生模拟数据的问题,另一个是自适应能力,当数据产生变化的时候,它能够去适应变化,而不是能力有所下降。所有一系列这些问题,都是下一个五或十年我们希望很快解决的。


AI ML DL的更多相关文章

  1. 2017 年 机器学习之数据挖据、数据分析,可视化,ML,DL,NLP等知识记录和总结

    今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己 ...

  2. ML,DL核心数学及算法知识点总结

    ML,DL核心数学及算法知识点总结:https://mp.weixin.qq.com/s/bskyMQ2i1VMNiYKIvw_d7g

  3. 人工智能和机器学习 AI&ML howto

    我关心的AI.ML的分支领域: 我的博客:Deep Learning 和 Knowledge Graph howto (有关DL&KG的资料都在这里) https://www.cnblogs. ...

  4. 痞子衡嵌入式:ARM Cortex-M内核那些事(3.3)- 为AI,ML而生(M55)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是ARM Cortex-M55. 鼠年春节,大家都在时刻关心 2019nCoV 疫情发展,没太多心思搞技术,就在这个时候,ARM 不声不响 ...

  5. 百度ML/DL方向面经

    最近败人品败得有些厉害,很多事都处理得不好--感觉有必要做点好事攒一攒. 虽然可能面试经过不是很有代表性,不过参考价值大概还是有的-- 由于当时人在国外,三轮都是电面-- 一面 当地时间早上5点半爬起 ...

  6. CS RANK: AI & ML

    http://csrankings.org/#/index?ai&mlmining 权威学术排名:30-100

  7. ML&DL视频教程资源

    作者:Bruce链接:https://www.zhihu.com/question/49909565/answer/345894856来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...

  8. Python之tkinter:调用python库的tkinter带你进入GUI世界(二)——Jason niu

    #tkinter:tkinter应用案例之便签框架LabelFrame的应用将组件(多选按钮)放到一个框架里 from tkinter import * root=Tk() root.title(&q ...

  9. Java 框架、库和软件的精选列表(awesome java)

    原创翻译,原始链接 本文为awesome系列中的awesome java Awesome Java Java 框架.库和软件的精选列表 项目 Bean映射 简化 bean 映射的框架 dOOv - 为 ...

随机推荐

  1. Linux 键盘输入#的时候变成£

    /********************************************************************************* * Linux 键盘输入#的时候变 ...

  2. leisure time

    终于把论文翻译完了,天哪,现在感觉解脱一般. 这些天看电视,玩游戏,也不止学了写什么,现在调整了下心情,重新确定下目标吧. 最近很想学Python和Qt,哎,技术永远都是学不完了,理解操作系统和组成原 ...

  3. Java读取txt文件信息并操作。

    一.java读取txt文件内容 import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.Fi ...

  4. 浅谈c#垃圾回收机制(GC)

    写了一个window服务,循环更新sqlite记录,内存一点点稳步增长.三天后,内存溢出.于是,我从自己的代码入手,查找到底哪儿占用内存释放不掉,最终明确是调用servicestack.ormlite ...

  5. flask第二十三篇——模板【5】过滤器

    请关注微信公众号:自动化测试实战 过滤器——format格式化 flaskDemo.py # coding: utf-8 from flask import Flask, render_templat ...

  6. Python :random 随机数生成

    Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random() 用于生成一个0到1的随机符点数: 0 &l ...

  7. Libusb学习

    1.参考:http://www.cnblogs.com/Daniel-G/archive/2013/04/22/3036730.html https://baike.so.com/doc/506541 ...

  8. Hystrix已经停止开发,官方推荐替代项目Resilience4j

    随着微服务的流行,熔断作为其中一项很重要的技术也广为人知.当微服务的运行质量低于某个临界值时,启动熔断机制,暂停微服务调用一段时间,以保障后端的微服务不会因为持续过负荷而宕机.本文介绍了新一代熔断器R ...

  9. bzoj2875随机数生成器

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵乘裸题. 如果直接乘的话会爆long long,所以用加法代替乘,过程中不断取模. ...

  10. vs2015 去除 git 源代码 绑定

    第一次碰到这个问题,想将源代码签入TFS管理.添加到源码管理后,默认添加到Git源码管理. 研究过后,发现: 1)删除框内文件 2)Vs2015->工具->选项->源代码管理-> ...