状态变化  (x,y,dx,dy,i) 表示i时刻熊站在(x,y)处速度向量(dx,dy)下一个状态是 ( 2x+y+dx+i , x+2y+dy+i , x+y+dx , x+y+dy , i+1 )

为了方便可以把平面从(1,1)平移到(0,0)  这时速度需要+2 (因为速度每次+x+y  x和y都-1则速度都+2)矩阵对应常数的地方为2

转移矩阵:{2,1,1,0,1,2},

{1,2,0,1,1,2},

{1,1,1,0,1,2},

          {1,1,0,1,1,2},

        {0,0,0,0,1,1},
{0,0,0,0,0,1}
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=<<+,inf=0x3f3f3f3f; struct Node{
ll row,col;
ll a[N][N];
};
ll n;
Node mul(Node x,Node y)
{
Node ans;
ans.row=x.row,ans.col=y.col;
memset(ans.a,,sizeof ans.a);
for(ll i=;i<x.row;i++)
for(ll j=;j<x.col;j++)
for(ll k=;k<y.col;k++)
ans.a[i][k]=(ans.a[i][k]+x.a[i][j]*y.a[j][k]+n)%n;
return ans;
}
Node quick_mul(Node x,ll n)
{
Node ans;
ans.row=x.row,ans.col=x.col;
memset(ans.a,,sizeof ans.a);
for(ll i=;i<ans.col;i++)ans.a[i][i]=;
while(n){
if(n&)ans=mul(ans,x);
x=mul(x,x);
n>>=;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
// cout<<setiosflags(ios::fixed)<<setprecision(2);
ll x,y,dx,dy,t;
cin>>n>>x>>y>>dx>>dy>>t;
x--,y--;
Node A;
A.row=,A.col=;
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=;
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=;
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=;
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=;
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=;
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=;
A=quick_mul(A,t);
Node B;
B.row=,B.col=;
B.a[][]=x,B.a[][]=y,B.a[][]=dx,B.a[][]=dy,B.a[][]=,B.a[][]=;
B=mul(A,B);
cout<<(B.a[][]+n)%n+<<" "<<(B.a[][]+n)%n+<<endl;
return ;
}

codefroce385E矩阵快速幂的更多相关文章

  1. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  2. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  3. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  4. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  5. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  6. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  7. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

随机推荐

  1. java 中关于System.out.println()的问题

    Java 的输出知识 1.System.out.println()不能直接写在类中,例如: 因为在 Class A{ //成员变量 //构造方法 //普通方法 //内部类 } 如果硬是想使用Syste ...

  2. 自动化测试学习day4

    主要学习内容:修改文件.集合.函数.模块 修改文件两种方法 修改文件方法一(缺点:代码繁琐,一次性将文件读出,文件过大可能会卡住) with open('geci', 'a+', encoding=' ...

  3. Linux eventfd分析

    2017-07-20 eventfd在linux中是一个较新的进程通信方式,和信号量等不同的是event不仅可以用于进程间的通信,还可以用户内核发信号给用户层的进程.eventfd在virtIO后端驱 ...

  4. kubernetes实战(三):k8s v1.11.1 持久化EFK安装

    1.镜像下载 所有节点下载镜像 docker pull kibana: docker tag kibana: docker.elastic.co/kibana/kibana: docker pull ...

  5. django后台获取相同name名的数据

    django后台获取相同name名的post数据html: <form method="post"> <input type="text" n ...

  6. Scala使用JUnit4单元测试

    在项目开发中在很多地方都要做单元测试,在做Spark项目时使用Scala开发.所以总结一下Scala中的单元测试: 在Maven pom文件中添加依赖: <dependency> < ...

  7. (转)JSON Web Token - 在Web应用间安全地传递信息

    JSON Web Token(JWT)是一个非常轻巧的规范.这个规范允许我们使用JWT在用户和服务器之间传递安全可靠的信息. 让我们来假想一下一个场景.在A用户关注了B用户的时候,系统发邮件给B用户, ...

  8. PAT 1135 Is It A Red-Black Tree[难]

    1135 Is It A Red-Black Tree (30 分) There is a kind of balanced binary search tree named red-black tr ...

  9. PAT Sum of Number Segments[数学问题][一般]

    1104 Sum of Number Segments(20 分) Given a sequence of positive numbers, a segment is defined to be a ...

  10. eclipse恢复默认布局

    eclipse恢复默认布局 Window (->Perspective ->) Reset Perspective