题目:https://www.luogu.org/problemnew/show/P2148

SG函数+找规律。

普通地用SG函数做。

每两堆是一个独立问题。因为虽然有可能一个人在同一组里连续操作2次,但操作一次一定会把一个必败状态改为必胜状态,不会需要连续操作两次。

关键是怎么快速求SG函数。

打表找规律:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int sg[][];
void dfs(int x,int y)
{
if(sg[x][y]!=-)return;
int sum=;
for(int i=;i<x;i++)
{
dfs(i,x-i);
sum|=(<<sg[i][x-i]);
}
for(int i=;i<y;i++)
{
dfs(i,y-i);
sum|=(<<sg[i][y-i]);
}
for(int i=;i<=;i++)
if((sum&(<<i))==)
{
sg[x][y]=i;sg[y][x]=i;
return;
}
}
int main()
{
memset(sg,-,sizeof sg);
sg[][]=;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
dfs(i,j);
printf("%3d",sg[i][j]);
}
printf("\n");
}
return ;
}

然后发现 i 和 j 的规律:

  SG=1:i % 2 ==1 && j % 2 ==1;

  SG=2:i % 4 == 1,2 && j % 4 == 1,2;

  SG=3:i % 8 == 1,2,3,4 && j % 8 == 1,2,3,4;

  ……

所以有了那个log的算法。

仔细一看,那个就是求 i 和 j 的第一个公共0在第几位,所以又有了O(1)的式子。

但是那个O(1)的式子有一个点过不去,是把NO输出成YES,不知何故。

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const ll N=2e4+;
ll T,n,a[],sum;
ll sg(ll a,ll b)
{
for(ll i=,tmp=;;i++,tmp<<=)
if((a-)%tmp<(tmp>>)&&(b-)%tmp<(tmp>>))
return i;
// ll k=((a-1)|(b-1));
// k=((k+1)&(-k-1));
// return k-1;
}
int main()
{
scanf("%lld",&T);
while(T--)
{
scanf("%lld",&n);sum=;
for(ll i=;i<=n;i++)
{
scanf("%lld",&a[i&]);
if(!(i&))sum^=sg(a[],a[]);
}
if(sum)printf("YES\n");
else printf("NO\n");
}
return ;
}

洛谷2148(SDOI2009) E&D的更多相关文章

  1. BZOJ1228或洛谷2148 [SDOI2009]E&D

    BZOJ原题链接 洛谷原题链接 完全不会呀.. 写了这题才知道\(SG\)函数原来也能打表找规律... 题解请看大佬的博客 #include<cstdio> using namespace ...

  2. 洛谷P1972 [SDOI2009]HH的项链 题解

    [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不 ...

  3. BZOJ1880或洛谷2149 [SDOI2009]Elaxia的路线

    BZOJ原题链接 洛谷原题链接 显然最长公共路径是最短路上的一条链. 我们可以把最短路经过的边看成有向边,那么组成的图就是一张\(DAG\),这样题目要求的即是两张\(DAG\)重合部分中的最长链. ...

  4. 洛谷P2148 [SDOI2009]E&D(博弈论)

    洛谷题目传送门 先安利蒟蒻仍在施工的博弈论总结 首先根据题目,石子被两两分组了,于是根据SG定理,我们只要求出每一组的SG值再全部异或起来就好啦. 把每一对数看成一个ICG,首先,我们尝试构造游戏的状 ...

  5. BZOJ1227或洛谷2154 [SDOI2009]虔诚的墓主人

    BZOJ原题链接 洛谷原题链接 又是扫描线,题解可看大佬的博客(太懒了不想打) #include<cstdio> #include<algorithm> using names ...

  6. BZOJ1226或洛谷2157 [SDOI2009]学校食堂

    BZOJ原题链接 洛谷原题链接 注意到\(B[i]\)很小,考虑状压\(DP\). 设\(f[i][j][k]\)表示前\(i - 1\)个人已经拿到菜,第\(i\)个人及其后面\(7\)个人是否拿到 ...

  7. [洛谷P1972][SDOI2009]HH的项链

    题目大意:给你一串数字,多次询问区间内数字的种类数 题解:莫队 卡点:洛谷数据加强,开了个$O(2)$ C++ Code: #include <cstdio> #include <a ...

  8. 洛谷 P1972 [SDOI2009]HH的项链【莫队算法学习】

    P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...

  9. 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...

随机推荐

  1. Web前端学习笔记之前端跨域知识总结

    0x00 前言 相信每一个前端er对于跨域这两个字都不会陌生,在实际项目中应用也是比较多的.但跨域方法的多种多样实在让人目不暇接.老规矩,碰到这种情况,就只能自己总结一篇博客,作为记录. 0x01 什 ...

  2. EL表达式判断条件要写在${}内

    由于老没开发框架了,今天提取公共省市县三级联动组件时,使用jsp传参搞了半天才弄出来. 组件代码 $(function(){console.log("${param.init}") ...

  3. tensorflow 安装GPU版本,个人总结,步骤比较详细【转】

    本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文ht ...

  4. MVC中定时发布二维码邮件

    发布邮件 查看第一个方法就可以了,第二个跟这个无关 using System; using System.Collections.Generic; using System.Linq; using S ...

  5. Linux环境下如何配置IP地址、MAC地址

    Linux环境下如何配置IP地址.MAC地址 1.配置IP地址 进入配置IP地址路径,进行修改即可 cd /etc/network vim interface 加入以下内容: iface eth0 i ...

  6. HDU 4714 Treecycle(树形dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4714 题意:给出一棵树,删除一条边和添加一条边的代价都是1,现在要把这棵树变成环,求需要花的最小代价. 思路: ...

  7. Question: Should I use reads with good quality but failed-vendor flag?--biostart for vendor quality

    https://www.biostars.org/p/198405/ Quick question is: I have some mapped reads in bam file which hav ...

  8. display:box,按比列划分,水平均分,及垂直等高

    一.按比例划分 <div class="test"> <p id="p1">Hello</p> <p id=" ...

  9. BooStrap4文档摘录 Utilities

    border:可以用原生css实现效果.❌没看 clearfix, float,  ✅ close icon ✅ colors ✅ display✅  各种显示的格式. embed ✅ <ifr ...

  10. html中元素盒子垂直居中的实现方法

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...