A context-aware personalized travel recommendation system based on geotagged social media data mining
文章简介:利用社交网站Flickr上照片的geotag信息将这些照片聚类发现城市里的旅游景点,通过各照片的拍照时间得到用户访问某景点时的时间上下文和天气上下文(利用时间和public API of Wunderground),将访问景点的上下文进行排序得到popular的上下文作为景点的上下文。在给用户作推荐时,首先得到用户当前的上下文或者要访问景点的上下文,利用上下文匹配出一些景点,然后在这些景点里头根据user-based collaborative filtering方法进行推荐,user-based collaborative filtering中用户对景点的评分使用用户访问某景点的次数。
The architecture behind our approach is configured into various modular tasks to carry out different operations as depicted in Figure 1.
We find tourist locations using spatial proximity of photos and enrich the aggregated locations with semantic annotations using textual tags annotated to photos in combination with information provided by Web services. Profiles of locations are built to describe the contexts in which they have been visited. To derive temporal context, geotags and temporal tags annotated with photos are exploited, whereas to derive weather context, we query thirdparty weather Web services to retrieve weather conditions. Relationship between users and locations is drawn to model users’ travel preferences. Then, these users’ preferences are used to estimate the similarities among users. For making recommendations, first we filter the locations based on contextual constraints, and then rank the locations by personalized score. A measure is defined to identify similar users in previously visited cities and aggregate these users’ opinions to obtain personalized score for each location in a target city for the target user.

A context-aware personalized travel recommendation system based on geotagged social media data mining的更多相关文章
- 论文阅读 | CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data
CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data ...
- Creating adaptive web recommendation system based on user behavior(设计基于用户行为数据的适应性网络推荐系统)
文章介绍了一个基于用户行为数据的推荐系统的实现步骤和方法.系统的核心是专家系统,它会根据一定的策略计算所有物品的相关度,并且将相关度最高的物品序列推送给用户.计算相关度的策略分为两部分,第一部分是针对 ...
- Recommendation system
Dear Prof.Choi: My research interest is mainly the application and optimization of big data and arti ...
- open source project for recommendation system
原文链接:http://blog.csdn.net/cserchen/article/details/14231153 目前互联网上所能找到的知名开源推荐系统(open source project ...
- 海量数据挖掘MMDS week4: 推荐系统Recommendation System
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- PAT1129:Recommendation System
1129. Recommendation System (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- A1129. Recommendation System
Recommendation system predicts the preference that a user would give to an item. Now you are asked t ...
- PAT A1129 Recommendation System (25 分)——set,结构体重载小于号
Recommendation system predicts the preference that a user would give to an item. Now you are asked t ...
- 1129 Recommendation System
1129 Recommendation System (25 分) Recommendation system predicts the preference that a user would gi ...
随机推荐
- 利用Python计算π的值,并显示进度条
利用Python计算π的值,并显示进度条 第一步:下载tqdm 第二步;编写代码 from math import * from tqdm import tqdm from time import ...
- 最大熵模型(MEM)
1. 最大熵原理 最大熵Max Entropy原理:学习概率模型时,在所有可能的概率模型(即概率分布)中,熵最大的模型是最好的模型. 通常还有其他已知条件来确定概率模型的集合,因此最大熵原理为:在满足 ...
- opencv检错:程序运行过程正常,当跳出函数时出现断言错误(Debug Assertion Failed)
转载http://blog.csdn.net/u012327581/article/details/51351780 1.问题描述 在VS2015下配置好Opencv后,程序在函数运行过程中正常,调试 ...
- 将一,二维数组转化为Excel格式
首先,我们来看一下一维数组的, 其代码可以如下: import numpy as np import pandas as pd x = pd.Series([1, 3, 5, np.nan]) pri ...
- 面试小记---java基础知识
**static 和 final 的理解** static:是静态变量修饰符,修饰的是全局变量,所以对象是共享的,在开始类设计的初期就分配空间. final:声明式属性,方法,类.分别表示属 ...
- 工作中常用的 Shell 命令及技巧
调试 bash 脚本的技巧 加 -x 参数运行 bash 脚本时,会显示执行的语句 # 也可以在 demo.sh 中加上 set -x bash -x demo.sh 设置环境变量,然后通过如上方式运 ...
- 从0开始的Hexo主题制作
从0开始的Hexo主题制作 从零开始制作 Hexo 主题 H2O主题 先坑着
- linux服务基础(一)之CentOS6编译安装httpd2.4
安装http-2.4 Http依赖于apr-1.4+,apr-util-1.4+ CentOS6上默认是apr-1.3,apr-util1.3 先编译安装apr-1.5,apr-util-1.5 开始 ...
- [译]RabbitMQ教程C#版 - 远程过程调用(RPC)
先决条件 本教程假定 RabbitMQ 已经安装,并运行在localhost标准端口(5672).如果你使用不同的主机.端口或证书,则需要调整连接设置. 从哪里获得帮助 如果您在阅读本教程时遇到困难, ...
- vue使用$http服务端收不到参数
老夫子我正在憋方案书,听到身后传来细软的声音:“李哥,我这有个Bug调了很长时间了,您能帮我看一下吗?”.说这话的是我的好朋友,公司新来的前端小妹伊万卡.我起身向她走去,看到因长时间调试Bug漂亮的脸 ...