1.神经网络工具箱概述

Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器、线性网络、BP网络、径向基函数网络、竞争型神经网络、自组织网络和学习向量量化网络、反馈网络。本文只介绍BP神经网络工具箱。

2.BP神经网络工具箱介绍

BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小。下面是关于一些BP神经网络的创建和训练的名称:

(1)newff:创建一前馈BP网络(隐含层只有一层)

(2)newcf:创建一多层前馈BP网络(隐含层有多层)

(3)train:训练一个神经网络

(4)sim:仿真一个神经网络

以上几个是最主要的语句,在后面的实例应用中会详细说明用法。

3.BP神经网络工具箱在函数逼近中的应用

BP神经网络具有很强的映射能力,主要用于模式识别分类、函数逼近、函数压缩等。下面通过实例来说明BP网络在函数逼近方面的应用。

本文需要逼近的函数是f(x)=1+sin(k*pi/2*x),其中,选择k=2进行仿真,设置隐藏层神经元数目为n,n可以改变,便于后面观察隐藏层节点与函数逼近能力的关系。

3.1 k=2,n=5时的仿真实验

先作出目标曲线的图形,以下为matlab代码:

clear all
clc
%%%%%%%%%%设置网络输入值和目标值%%%%%%%%%%
k=2;%f(x)中的k值
x=[-1:.05:8];
f=1+sin(k*pi/2*x);
plot(x,f,'-');
title('要逼近的非线性函数');
xlabel('时间');
ylabel('非线性函数');

接着用newff函数建立BP神经网络结构,以下为matlab代码:

%%%%%%%%%%建立网络%%%%%%%%%%
n=5;%隐藏层节点数
net = newff(minmax(x),[n,1],{'tansig' 'purelin'},'trainlm');
%对于初始网络,可以应用sim()函数观察网络输出。
y1=sim(net,x);
figure;
plot(x,f,'-',x,y1,':')
title('未训练网络的输出结果');
xlabel('时间');
ylabel('仿真输出--原函数-');

代码中的tansig和purelin分别是隐藏层神经元激活函数和输出层神经元激活函数,trainlm是训练函数(Levenberg-Marquardt算法训练BP网络)

仿真效果如下:

我们可以看到仿真的函数与目标函数相差甚远,这是因为使用newff()函数建立函数网络时,权值和阈值的初始化是随机的,所以网络输出结构很差,根本达不到函数逼近的目的。

因此接下来应用train()函数对网络进行训练后再进行仿真。训练之前,需要预先设置网络训练参数,这里只设置了训练的迭代次数和训练精度,其余参数使用默认值。训练神经网络的matlab代码如下:

%%%%%%%%%%设置训练网络参数%%%%%%%%%%
net.trainParam.epochs=200; %网络最大迭代次数设置为200
net.trainParam.goal=0.2; %网络训练精度设置为0.2
net=train(net,x,f); %开始训练网络;

训练后 得到的误差变化过程如下图所示,可以看出,在运行到第145步时,网络输出误差达到设定的训练精度。

训练好的网络进行仿真,代码如下:

%%%%%%%%%%仿真网络%%%%%%%%%%
y2=sim(net,x);
figure;
plot(x,f,'-',x,y1,':',x,y2, '--')
title('训练后网络的输出结果');
xlabel('时间');
ylabel('仿真输出');

绘制网络输出曲线,与目标曲线和未训练网络的输出结果相比较,如下图所示:

由此可以看出,与未训练的曲线相比,经过训练之后的曲线和目标曲线更接近,这说明BP网络对非线性函数的逼近效果比较好。

接下来通过改变隐藏层的节点数来看其对网络逼近的效果

3.2 k=2,n=3、n=10时的仿真实验

将隐藏层节点数改为3,其他条件不变,仿真效果如下:

将隐藏层节点数改为10,其他条件不变,仿真效果如下:

由以上两张图可以看出,当n=10时,经过训练后的曲线基本跟目标曲线重合;当n=3时,逼近效果却很差,这说明改变隐藏层节点数对函数逼近的效果有一定影响。

4.总结

一般来说,隐藏层神经元数目越多,则BP网络逼近非线性函数的能力越强。由于本例中单隐含层的输入层和输出层神经元个数均为1,那么隐含层的个数可以根据设计经验公式和该问题的实际情况相结合,通过实验选取最好的隐藏层节点数,使得逼近效果最佳。

Matlab的BP神经网络工具箱及其在函数逼近中的应用的更多相关文章

  1. [matlab]bp神经网络工具箱学习笔记

    基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural ne ...

  2. Matlab实现BP神经网络预测(附实例数据及代码)

    BP神经网络介绍 神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理.在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元.输出单元和隐含单元. 顾名 ...

  3. BP神经网络及其在教学质量评价中 的应用

    本文学习笔记是自己的理解,如有错误的地方,请大家指正批评.共同进步.谢谢! 之前的教学质量评价,仅仅是通过对教学指标的简单处理.如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有非常大主观性 ...

  4. 基于Matlab实现多次最佳一致的函数逼近(类似求渐进函数)

    %%%做系统识别很重要,方法上完全符合系统识别最基础的理论 function [sun]=main(n) fplot(,],'r'); x=ones(n+,); :n+ x(j+)=cos(pi*(n ...

  5. MATLAB神经网络(2) BP神经网络的非线性系统建模——非线性函数拟合

    2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用 ...

  6. 神经网络中的BP神经网络和贝叶斯

    1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体 ...

  7. 【转载】BP神经网络

    原文地址:http://blog.csdn.net/acdreamers/article/details/44657439 今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识 ...

  8. 三.BP神经网络

    BP神经网络是包含多个隐含层的网络,具备处理线性不可分问题的能力.以往主要是没有适合多层神经网络的学习算法,,所以神经网络的研究一直处于低迷期. 20世纪80年代中期,Rumelhart,McClel ...

  9. MATLAB神经网络(3) 遗传算法优化BP神经网络——非线性函数拟合

    3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参 ...

随机推荐

  1. C# string 常用功能的方法扩展

    #region Usings using System; using System.Text; using System.Data; using System.Data.SqlClient; usin ...

  2. 用Volume在主机和Docker容器文件传输

    1.使用Volume在主机和容器之间传输文件. 在官方文档中可以看到使用如下命令即可创建一个volume: Create a volume: $ docker volume create my-vol ...

  3. orcl数据库锁等级研究小记

    上周通过orcl 悲观锁的方式解决了一个并发临界值的问题.现在来研究下orcl各中锁的机制以及如何手动释放锁. 首先,通过查阅资料,先了解下数据的的各种操作语言分类. SQL语言共分为四大类:数据查询 ...

  4. 【SparkStreaming学习之三】 SparkStreaming和kafka整合

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  5. v-charts

    因为工作需要,使用v-chart也有一段时间了,期间针对配置图表也遇到了不少问题,在这里总结一下. 如何配置图表信息 echart的配置项可谓是相当的海量,能不看就不看.而v-chart对其进行了不少 ...

  6. java线程学习之volatile关键字

    volatile变量的主要作用:是使变量在多个线程间可见. 在java中每一个线程都会有一块工作内存区,其中存放着所有线程共享的主内存的变量值的拷贝.当线程执行时,它在自己的工作内存区操作这些变量,为 ...

  7. 在java中如何处理日期格式问题

    1.最简洁的办法就是在对应的对象中加注解 如下一个例子: @DateTimeFormat(pattern="yyyy-MM-dd") @JsonFormat(pattern=&qu ...

  8. 关于C#的Main(String[] args)参数输入问题

    关于C#的Main(String[] args)参数输入问题 指定相关的测试代码 首先,写一个用于测试的关于Main(String[] args)参数输入有关的代码类,如下: using System ...

  9. C# DataGridView 动态添加列和调整列顺序

    https://yq.aliyun.com/articles/421700 // DataGridView1的ColumnDisplayIndexChanged事件处理方法private void D ...

  10. ZJOI 2014 星系调查(推导)

    题意 https://loj.ac/problem/2201 思路 说白了就是一条路径上有 \(n\) 个二维坐标,求一条直线使得所有点到此直线的距离和最小. 设这条直线为 \(y=kx+b\) ,距 ...