[LeetCode] 4. 寻找两个有序数组的中位数
题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/
题目描述:
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例:
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
思路:
这道题如果时间复杂度没有限定在\(O(log(m+n))\),我们可以用\(O(m+n)\)的算法解决,用两个指针分别指向两个数组,比较指针下的元素大小,一共移动次数为(m+n + 1)/2,便是中位数.
首先,我们理解什么中位数:指的是该数左右个数相等.
比如: odd : [1,| 2 |,3],2就是这个数组的中位数,左右两边都只要1位;
even: [1,| 2, 3 |,4],2,3就是这个数组的中位数,左右两边1位;
那么,现在我们有两个数组:
num1: [a1,a2,a3,...an]
nums2: [b1,b2,b3,...bn]
[nums1[:left1],nums2[:left2] | nums1[left1:], nums2[left2:]]
只要保证左右两边个数相同,中位数就在|这个边界旁边产生.
如何找边界值,我们可以用二分法,我们先确定num1取m1左半边,那么num2 取m2 = (m+n+1)/2 - m1的左半边,找到合适的m1,就用二分法找,关于我的二分法看另一篇文章
当 [ [a1],[b1,b2,b3] | [a2,..an],[b4,...bn] ]
我们只需要比较 b3和a2的关系的大小,就可以知道这种分法是不是准确的!
例如:我们令:
nums1 = [-1,1,3,5,7,9]
nums2 =[2,4,6,8,10,12,14,16]
当m1 = 4,m2 = 3
median = (num1[m1] + num2[m2])/2
时间复杂度:\(O(log(min(m,n)))\)
对于代码中边界情况,大家需要自己琢磨.
感觉对自己有用,就点个赞吧,并关注我的知乎专栏,嘻嘻!
代码:
python版
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
n1 = len(nums1)
n2 = len(nums2)
if n1 > n2:
return self.findMedianSortedArrays(nums2,nums1)
k = (n1 + n2 + 1)//2
left = 0
right = n1
while left < right :
m1 = left +(right - left)//2
m2 = k - m1
if nums1[m1] < nums2[m2-1]:
left = m1 + 1
else:
right = m1
m1 = left
m2 = k - m1
c1 = max(nums1[m1-1] if m1 > 0 else float("-inf"), nums2[m2-1] if m2 > 0 else float("-inf") )
if (n1 + n2) % 2 == 1:
return c1
c2 = min(nums1[m1] if m1 < n1 else float("inf"), nums2[m2] if m2 <n2 else float("inf"))
return (c1 + c2) / 2
c++版
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
const int n1 = nums1.size();
const int n2 = nums2.size();
if(n1>n2) return findMedianSortedArrays(nums2, nums1);
const int k = (n1 + n2 + 1)/2;
int left = 0;
int right = n1;
while(left < right){
const int m1 = left + (right - left)/2;
const int m2 = k - m1;
if(nums1[m1]<nums2[m2-1])
left = m1 + 1;
else
right = m1;
}
const int m1 = left;
const int m2 = k - left;
const int c1 = max(m1 <= 0 ? INT_MIN:nums1[m1-1],
m2 <= 0 ? INT_MIN:nums2[m2-1]);
if((n1 + n2)%2 == 1)
return c1;
const int c2 = min(m1 >= n1 ? INT_MAX: nums1[m1],
m2 >= n2 ? INT_MAX : nums2[m2]);
return (c1 + c2) * 0.5;
}
};
java版
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int n1 = nums1.length;
int n2 = nums2.length;
if (n1>n2)
return findMedianSortedArrays(nums2, nums1);
int k = (n1 + n2 + 1)/2;
int left = 0;
int right = n1;
while(left < right){
int m1 = left +(right - left)/2;
int m2 = k - m1;
if (nums1[m1] < nums2[m2-1])
left = m1 + 1;
else
right = m1;
}
int m1 = left;
int m2 = k - left;
int c1 = Math.max(m1 <= 0 ? Integer.MIN_VALUE : nums1[m1-1],
m2 <= 0 ? Integer.MIN_VALUE : nums2[m2-1]);
if ((n1 + n2) % 2 == 1)
return c1;
int c2 = Math.min( m1 >= n1 ? Integer.MAX_VALUE :nums1[m1],
m2 >= n2 ? Integer.MAX_VALUE : nums2[m2]);
return (c1 + c2) * 0.5;
}
}
[LeetCode] 4. 寻找两个有序数组的中位数的更多相关文章
- Java实现 LeetCode 4 寻找两个有序数组的中位数
寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 n ...
- 【LeetCode】寻找两个有序数组的中位数【性质分析+二分】
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 ...
- 【LeetCode】寻找两个有序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 ...
- leetcode 4 寻找两个有序数组的中位数 二分法&INT_MAX
小知识 INT_MIN在标准头文件limits.h中定义. #define INT_MAX 2147483647#define INT_MIN (-INT_MAX - 1) 题解思路 其实是类似的二分 ...
- leetcode 4寻找两个有序数组的中位数
最优解O(log(min(m,n))) /** 之前用合并有序数组的思想做了O((m+n+1)/2),现在试一试O(log(min(m,n))) 基本思路为:通过二分查找较小的数组得到对应的中位数(假 ...
- LeetCode Golang 4. 寻找两个有序数组的中位数
4. 寻找两个有序数组的中位数 很明显我偷了懒, 没有给出正确的算法,因为官方的解法需要时间仔细看一下... func findMedianSortedArrays(nums1 []int, nums ...
- Leetcode(4)寻找两个有序数组的中位数
Leetcode(4)寻找两个有序数组的中位数 [题目表述]: 给定两个大小为 m 和 n 的有序数组 nums1 和* nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O( ...
- 0004. 寻找两个有序数组的中位数(Java)
4. 寻找两个有序数组的中位数 https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 最简单的就是用最简单的,把两个数组分别抽出然 ...
- leetcode题目4.寻找两个有序数组的中位数(困难)
题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 ...
随机推荐
- (五)通过Python的select监控多个描述符实现并发连接
概述 本文通过使用select改写之前的服务器程序通过监控多个套接字描述符来实现并发连接并加入了一些机制让程序更加健壮,不过我们所有的实验都是建立在单词发送数据不会超过1024字节,如果超过你需要做特 ...
- 基于spark实现并行化Apriori算法
详细代码我已上传到github:click me 一. 实验要求 在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法.要求程序利用 Spark 进行并行计算. ...
- mybatis注解@Param对JavaBean的作用
当参数是一个JavaBean时,如果不用@Param且sql里获取变量用#{},如@Select("SELECT id,USERNAME,uname from uk_user where d ...
- [三] java虚拟机 JVM字节码 指令集 bytecode 操作码 指令分类用法 助记符
说明,本文的目的在于从宏观逻辑上介绍清楚绝大多数的字节码指令的含义以及分类 只要认真阅读本文必然能够对字节码指令集有所了解 如果需要了解清楚每一个指令的具体详尽用法,请参阅虚拟机规范 指令简介 计算机 ...
- 不能ssh连接ubuntu linux 服务器 secureCRT不能ssh连接服务器 不能远程ssh连接虚拟机的ubuntu linux
我是用的是secureCRT,远程连接我的虚拟机里面的ubuntu 直接报错,连接不上 1,先分别在windows上ipconfig和ubuntu上ifconfig下 互ping一下,是可以ping通 ...
- BUG心得
在<程序员,你会从 Bug 中学习么?>一文中,我写了我是怎样追踪这些年遇到的最有趣 bug 的.最近我重新浏览了这所有的 194 个条目(历时 13 年),看看我从这些 bug 中学到了 ...
- 设计模式之Factory工厂模式的好处
最最直观的好处就是吹牛逼,看着要比普通创建对象要屌 好看 一般情况下,我们创建对象使用的是new. Sample sample=new Sample(); 然而,实际情况会比这样复杂的多,比如说 Sa ...
- html/css的学习之路(1)
HTML5简介:HTML5是什么?要回答这个问题,我们需要先了解一下HTML是什么.HTML的英文全称为Hyper Text Markup Language,即超文本标记语言.HTML5是HTML的一 ...
- npm run dev 启动错误:Module build failed: Error: No PostCSS Config found in:xxxxxxxxxxxxxx
解决办法:在根目录新建postcss.config.js module.exports = { plugins: { 'autoprefixer': {browsers: 'last 5 versio ...
- 【Dojo 1.x】笔记2 使用服务器环境及使用模块
又开坑了.上次静态html页面完成本地module的引用,算是成功了,但是并不知道是怎么运作的,没关系慢慢来. 我用的环境是VSCode,这次因为官方说要在服务器环境下运行,所以就用上了VSCode的 ...