OSU! on tree
dsu on tree
好吧,这个毒瘤......
树剖和启发式合并的杂合体。
用于解决静态子树问题,复杂度O(nlogn * insert时间)
因为dsu是并查集的意思所以算法名字大概就是什么树上并查集之类的鬼东西。
因为dsu是并查集的意思所以函数名字看起来会很奇怪......
主要思想是这样的:
首先仿照树剖搞出轻重子节点。
dsu到一个点的时候,dsu所有的轻子树并消除影响。
dsu重子树并保留影响,从重子节点那里继承答案。
计算自己的贡献。
插入所有轻子树并更新自己的答案。
如果自己是轻子树的话,消除自己的影响。
回溯。
可知每个点最多经过logn个重链就能到达根,所以每个点最多插入logn次。
例题:
给你一棵树以1号节点为根的树,每个节点上有一个体积为v,价值为w的物品。现
在要你统计,对于所有点i,如果只能取子树i中的物品,则容积为m的背包
至多能装总价值多少的物品。 n <= 50000 m <= 300
跟大部分dsu on tree有点区别,因为是树形背包变种所以不用消除轻子树影响。
首先考虑正常背包:
计算完子节点后merge子节点和自己,复杂度V²
总共nV²会超时。
然后考虑dsu on tree:
把重儿子memcpy给自己,然后依次insert每个轻儿子,虽然看起来比之前那个慢但是实际上...
复杂度mnlogn,显得十分之快...
#include <cstdio>
#include <algorithm>
#include <cstring>
const int N = , M = ;
struct Edge {
int v, nex;
}edge[N]; int t;
int e[N], son[N], siz[N];
int f[N][M], cost[N], val[N], V; inline void add(int x, int y) {
t++;
edge[t].v = y;
edge[t].nex = e[x];
e[x] = t;
return;
} void DFS_1(int x) {
siz[x] = ;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
DFS_1(y);
siz[x] += siz[y];
if(siz[y] > siz[son[x]]) {
son[x] = y;
}
}
return;
} void insert(int x, int p) {
for(int i = V; i >= cost[x]; i--) {
f[p][i] = std::max(f[p][i], f[p][i - cost[x]] + val[x]);
}
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
insert(y, p);
}
return;
} void dsu(int x) {
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == son[x]) {
continue;
}
dsu(y);
}
if(son[x]) {
dsu(son[x]);
memcpy(f[x], f[son[x]], sizeof(f[x]));
}
for(int i = V; i >= cost[x]; i--) {
f[x][i] = std::max(f[x][i], f[x][i - cost[x]] + val[x]);
}
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == son[x]) {
continue;
}
insert(y, x);
}
return;
} int main() {
int n;
scanf("%d%d", &n, &V);
for(int i = ; i <= n; i++) {
scanf("%d%d", &cost[i], &val[i]);
}
for(int i = , x; i <= n; i++) {
scanf("%d", &x);
add(x, i);
}
DFS_1();
dsu();
for(int i = ; i <= n; i++) {
printf("%d ", f[i][V]);
}
return ;
}
AC代码
CF 600E Lomsat gelral
题意:求树上每个子树中出现次数最多的颜色。如果有相同次数就颜色相加。
套路:先走轻儿子,传清空标记。
然后走重儿子,不清空。继承答案。
统计自己的贡献。
insert轻儿子并统计答案。
如果有清空标记就清空。
#include <cstdio>
const int N = ;
typedef long long LL;
struct Edge {
int v, nex;
}edge[N << ]; int top;
int e[N], val[N], bin[N], large[N], son[N], siz[N];
LL ans[N]; inline void add(int x, int y) {
top++;
edge[top].v = y;
edge[top].nex = e[x];
e[x] = top;
return;
} void DFS_1(int x, int f) {
siz[x] = ;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == f) {
continue;
}
DFS_1(y, x);
siz[x] += siz[y];
if(siz[y] > siz[son[x]]) {
son[x] = y;
}
}
return;
} void insert(int x, int f, int p) {
bin[val[x]]++;
if(bin[val[x]] > large[p]) {
large[p] = bin[val[x]];
ans[p] = val[x];
}
else if(bin[val[x]] == large[p]) {
ans[p] += val[x];
} for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y != f) {
insert(y, x, p);
}
}
return;
} void erase(int x, int f) {
bin[val[x]]--;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y != f) {
erase(y, x);
}
}
return;
} void dsu(int x, int f, int k) {
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == f || y == son[x]) {
continue;
}
dsu(y, x, );
}
if(son[x]) {
dsu(son[x], x, );
ans[x] = ans[son[x]];
large[x] = large[son[x]];
} bin[val[x]]++;
if(bin[val[x]] > large[x]) {
large[x] = bin[val[x]];
ans[x] = val[x];
}
else if(bin[val[x]] == large[x]) {
ans[x] += val[x];
} for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == f || y == son[x]) {
continue;
}
insert(y, x, x);
}
if(!k) {
erase(x, f);
}
return;
} int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &val[i]);
}
for(int i = , x, y; i < n; i++) {
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
DFS_1(, );
dsu(, , );
for(int i = ; i <= n; i++) {
printf("%I64d ", ans[i]);
}
return ;
}
AC代码
一开始WA了第25个点,没找出错来,仔细思考发现答案可能是n²级别的,爆int了,开long long之后A掉。
OSU! on tree的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- 无限分级和tree结构数据增删改【提供Demo下载】
无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...
- 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>
在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 100 - Same Tree
题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode 笔记 101 - Symmetric Tree
题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...
随机推荐
- java新知识系列 二
1:数据库事务隔离以及事务隔离的级别 数据库事务隔离: 在数据库操作中,为了有效保证并发读取数据的正确性,提出的事务隔离级别:为了解决更新丢失,脏读,不可重读(包括虚读和幻读)等问题在标准SQL规 ...
- Emmet 简介
Emmet 简介 Intro 什么是 Emmet? Emmet is a plugin for many popular text editors which greatly improves HTM ...
- SqlServer sa 用户登录失败的解决方法
一.控制面板->服务->MS SQL SERVER->登录-->本地系统帐户-->重新启动MS SQL SERVER用windows验证登陆查询分析器-->执行 s ...
- 【转贴】一次 JDBC 与 MySQL 因 “CST” 时区协商误解导致时间差了 14 或 13 小时的排错经历
原文:https://juejin.im/post/5902e087da2f60005df05c3d ------------------------------------------------- ...
- oracle 10g函数大全--日期型函数
sysdate [功能]:返回当前日期. [参数]:没有参数,没有括号 [返回]:日期 [示例]select sysdate hz from dual; 返回:2008-11-5 add_months ...
- Istio入门实战与架构原理——使用Docker Compose搭建Service Mesh
本文将介绍如何使用Docker Compose搭建Istio.Istio号称支持多种平台(不仅仅Kubernetes).然而,官网上非基于Kubernetes的教程仿佛不是亲儿子,写得非常随便,不仅缺 ...
- window批处理修改计算机名
一.需要重启 @echo offset /p pcnanme=请输入计算机的名字:reg add HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Com ...
- 浏览器仿EXCEL表格插件 版本更新 - 智表ZCELL产品V1.3发布
智表(zcell)是一款浏览器仿excel表格jquery插件.智表可以为你提供excel般的智能体验,支持双击编辑.设置公式.设置显示小数精度.下拉框.自定义单元格.复制粘贴.不连续选定.合并单元格 ...
- Flink 的Window 操作(基于flink 1.3描述)
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何 ...
- Jenkins之Job建立-运行本地脚本
新建一个自由风格的项目,运行本地脚本 1.点击菜单栏中的“新任务” 2.进入该页面后输入一个项目名称,然后选择“构建一个自由风格的软件项目”,滑动到最底端,点击ok(在左下角) 3.进入下图页面后 “ ...