[八省联考2018]林克卡特树lct
题解:
zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分。。
不过得分开来写。。因为两个数组不能同时满足
背包的话就是
$f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上扩展的最大值
然后辅助数组$g[i][j][0/1/2/3]$表示考虑i子树,不取根,取根,取根连一条向下链,取根连两条向下链
然后代码非常好写(边界情况注意一下就可以了)
另外这个的时间复杂度$nk$分析是个比较套路的东西
我们转移的时候需要给j这一维$min$一个子树大小,不然就是$n*k^2$的了
由于看时间比较宽松。。我写的常数巨大。。感觉稍微卡卡可以快4-5倍
正解很简单,但是wqs二分用的不多应该不太会想到。。
因为感觉上这个是可以用其他来优化的
#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for(int i=h;i<=t;i++)
#define dep(i,t,h) for(int i=t;i>=h;i--)
#define ll long long
#define me(x) memset(x,0,sizeof(x))
#define mep(x,y) memcpy(x,y,sizeof(y))
#define mid (t<=0?(h+t-1)/2:(h+t)/2)
namespace IO{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T> void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; ll Z,C1=-;
template<class T>void wer(T x)
{
if (x<) sr[++C1]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C1]=z[Z],--Z);
}
IL void wer1()
{
sr[++C1]=' ';
}
IL void wer2()
{
sr[++C1]='\n';
}
template<class T>IL void maxa(T &x,T y) {if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) {if (x>y) x=y;}
template<class T>IL T MAX(T x,T y){return x>y?x:y;}
template<class T>IL T MIN(T x,T y){return x<y?x:y;}
};
using namespace IO;
const int N=;
const int N2=1.5e5;
const int INF=1e9;
struct re{
int a,b,c;
}e[N2*];
int l,head[N2];
int f[N][N][],g[N][N][],g1[N][],num[N],n,m,k;
void arr(int x,int y,int z)
{
e[++l].a=head[x];
e[l].b=y;
e[l].c=z;
head[x]=l;
}
struct query2{
int f[N2][][],g[N2][][],g1[][],num[N2];
void dfs(int x,int y)
{
num[x]=;
g[x][][]=g[x][][]=g[x][][]=-INF;
for (rint u=head[x];u;u=e[u].a)
{
int v=e[u].b;
if (v!=y)
{
dfs(v,x);
rep(i,,MIN(k,num[x]))
g1[i][]=g[x][i][],g1[i][]=g[x][i][],g1[i][]=g[x][i][],g1[i][]=g[x][i][];
dep(i,MIN(k,num[x]),)
dep(j,MIN(k,num[v]),)
if (i+j-<=k)
{
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
if (i>&&j>) maxa(g[x][i+j-][],g1[i][]+f[v][j][]+e[u].c);
if (i>&&j>) maxa(g[x][i+j-][],g1[i][]+f[v][j][]+e[u].c);
}
num[x]+=num[v];
}
}
rep(i,,MIN(num[x],k))
f[x][i][]=MAX(g[x][i][],g[x][i][]),
f[x][i][]=MAX(g[x][i][],g[x][i][]);
}
}S;
void dfs(int x,int y)
{
num[x]=;
g[x][][]=g[x][][]=g[x][][]=-INF;
for (rint u=head[x];u;u=e[u].a)
{
int v=e[u].b;
if (v!=y)
{
dfs(v,x);
rep(i,,num[x])
g1[i][]=g[x][i][],g1[i][]=g[x][i][],g1[i][]=g[x][i][],g1[i][]=g[x][i][];
dep(i,MIN(k,num[x]),)
dep(j,MIN(k,num[v]),)
if (i+j-<=k)
{
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
if (i>&&j>) maxa(g[x][i+j-][],g1[i][]+f[v][j][]+e[u].c);
if (i>&&j>) maxa(g[x][i+j-][],g1[i][]+f[v][j][]+e[u].c);
}
num[x]+=num[v];
}
}
rep(i,,MIN(num[x],k))
f[x][i][]=MAX(g[x][i][],g[x][i][]),
f[x][i][]=MAX(g[x][i][],g[x][i][]);
}
int main()
{
read(n); read(k);
rep(i,,n-)
{
int x,y,z;
read(x); read(y); read(z);
arr(x,y,z); arr(y,x,z);
}
if (k==)
{
S.dfs(,);
cout<<MAX(S.f[][k][],S.f[][k][])<<endl;
} else
{
dfs(,);
cout<<MAX(f[][k][],f[][k][])<<endl;
}
return ;
}
#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for(int i=h;i<=t;i++)
#define dep(i,t,h) for(int i=t;i>=h;i--)
#define ll long long
#define me(x) memset(x,0,sizeof(x))
#define mep(x,y) memcpy(x,y,sizeof(y))
#define mid (t<=0?(h+t-1)/2:(h+t)/2)
namespace IO{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T> void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; ll Z,C1=-;
template<class T>void wer(T x)
{
if (x<) sr[++C1]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C1]=z[Z],--Z);
}
IL void wer1()
{
sr[++C1]=' ';
}
IL void wer2()
{
sr[++C1]='\n';
}
template<class T>IL void maxa(T &x,T y) {if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) {if (x>y) x=y;}
template<class T>IL T MAX(T x,T y){return x>y?x:y;}
template<class T>IL T MIN(T x,T y){return x<y?x:y;}
};
using namespace IO;
const int N=;
const int N2=3.1e5;
const int INF=1e9;
struct re{
int a,b,c;
}e[N2*];
int l,head[N2];
int f[N2][N][],g[N2][N][],g1[N2][],num[N2],n,m,k;
void arr(int x,int y,int z)
{
e[++l].a=head[x];
e[l].b=y;
e[l].c=z;
head[x]=l;
}
void dfs(int x,int y)
{
num[x]=;
g[x][][]=g[x][][]=g[x][][]=-INF;
for (rint u=head[x];u;u=e[u].a)
{
int v=e[u].b;
if (v!=y)
{
dfs(v,x);
rep(i,,MIN(k,num[x]))
g1[i][]=g[x][i][],g1[i][]=g[x][i][],g1[i][]=g[x][i][],g1[i][]=g[x][i][];
dep(i,MIN(k,num[x]),)
dep(j,MIN(k,num[v]),)
if (i+j-<=k)
{
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
maxa(g[x][i+j][],g1[i][]+MAX(f[v][j][],f[v][j][]));
if (i>&&j>) maxa(g[x][i+j-][],g1[i][]+f[v][j][]+e[u].c);
if (i>&&j>) maxa(g[x][i+j-][],g1[i][]+f[v][j][]+e[u].c);
}
num[x]+=num[v];
}
}
rep(i,,MIN(num[x],k))
f[x][i][]=MAX(g[x][i][],g[x][i][]),
f[x][i][]=MAX(g[x][i][],g[x][i][]);
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
read(n); read(k); k++;
rep(i,,n-)
{
int x,y,z;
read(x); read(y); read(z);
arr(x,y,z); arr(y,x,z);
}
dfs(,);
cout<<MAX(f[][k][],f[][k][])<<endl;
return ;
}
[八省联考2018]林克卡特树lct的更多相关文章
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
- P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分
$ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
- [BZOJ5252][八省联考2018]林克卡特树lct
bzoj(上面可以下数据) luogu description 在树上选出\(k\)条点不相交的链,求最大权值. 一个点也算是一条退化的链,其权值为\(0\). sol 别问我为什么现在才写这题 首先 ...
- P4383 [八省联考2018]林克卡特树lct
题目链接 题意分析 一句话题意就是 : 让你选出\((k+1)\)条不相交的链 使得这些链的边权总和最大 (这些链可以是点) 我们考虑使用树形\(DP\) \(dp[i][j][0/1/2]\)表示以 ...
- dp凸优化/wqs二分学习笔记(洛谷4383 [八省联考2018]林克卡特树lct)
qwq 安利一个凸优化讲的比较好的博客 https://www.cnblogs.com/Gloid/p/9433783.html 但是他的暴力部分略微有点问题 qwq 我还是详细的讲一下这个题+这个知 ...
随机推荐
- Djangon的坑
<a href="/del_student/?pk={{ students.pk }}"></a> 在django中当你写入这样的语句是,pk={{ stu ...
- CODEVS 3546 矩阵链乘法
http://codevs.cn/problem/3546/ 题目 给定有n个要相乘的矩阵构成的序列(链)<A1,A2,A3,.......,An>,要计算乘积A1A2.....An.一组 ...
- Word自定义多级列表样式
Word自定义多级列表样式: 1. 2. 3.取个名字 在这里鼠标移上时显示 : 4. 5. 定义完成,即可使用:
- Python的虚拟环境
Python自带env # 新建虚拟环境 python -m venv env_name # 激活虚拟环境 cd env_name cd Scripts activate # 退出虚拟环境 # 到达虚 ...
- linux在线安装JDK(1.8版本)
在线下载JDK 命令: wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-sec ...
- SpringBoot入门-2(两种热部署方式)
在编写代码的时候,你会发现我们只是简单把打印信息改变了,就需要重新部署,如果是这样的编码方式,那么我们估计一天下来就真的是打几个Hello World就下班了.那么如何解决热部署的问题呢?那就是spr ...
- Ubuntu操作用户账户
Git Gerrit $是普通管员,#是系统管理员,在Ubuntu下,root用户默认是没有密码的,因此也就无法使用(据说是为了安全).想用root的话,得给root用户设置一个密码: sudo pa ...
- redis远程连接报错记录
错误如下 redis可视化工具连接测试 telnet ip 6379 修改关键参数如下 #开通外网访问 # bind 127.0.0.1 #以后台方式运行 daemonize no #取消保护模式,保 ...
- CentOS7.3安装VirtualBox
安装 DKMS.更新内核 # yum -y install gcc make glibc kernel-headers kernel-devel dkms Installed: dkms.noar ...
- js中escape对应的C#解码函数 UrlDecode
js中escape对应的C#解码函数 System.Web.HttpUtility.UrlDecode(s),使用过程中有以下几点需要注意 js中escape对应的C#解码函数 System.We ...