Barber paradox
According to Wikipedia, the well known barber paradox states like this:
The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave himself?
Actually, this paradox is directly related to the second part of Theorem 7.8 in James Munkres “Topology”. This theorem says:
Let \(A\) be a set. There is no injective map \(f: \mathcal{P}(A) \rightarrow A\), and there is no surjective map \(g: A \rightarrow \mathcal{P}(A)\).
Here \(\mathcal{P}(A)\) represents the power set of \(A\).
Mapped to the barber paradox, this theorem can be dissected as below:
Let the set \(A\) represent all the people involved in the paradox. Let \(a\) be any one of the barbers and the surjective map \(g\) associate \(a\) with a group of people \(C \in \mathcal{P}(A)\), who do not shave themselves and are \(a\)’s customers. Then, let \(B\) be a subset of \(A\) including all the barbers. Because \(g\) is surjective, this group of barbers \(B\) must also have its own pre-image, which is a singleton \(\{a_0\}\) in \(A\). According to the definition of \(g\), all the barbers in group \(B\) do not shave themselves and the only people \(a_0\) in the singleton is also a barber who provides service to all barbers in \(B\). And here we have the paradox: on one hand, because the barber \(a_0\) belongs to the subset \(B\) so \(a_0\) does not shave himself; on the other hand, the rule of assignment for the surjective map \(g\) ensures \(a_0\) really shaves himself.
Although we have an unsolvable paradox here, there is no need to bear any qualms. In reality, the barbers in \(B\) do not need a high-level barber’s barber or a barber from another city as the \(a_0\). They can simply provide mutual help to each other.
Barber paradox的更多相关文章
- Codeforces 711E ZS and The Birthday Paradox
传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- URAL 1774 A - Barber of the Army of Mages 最大流
A - Barber of the Army of MagesTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/v ...
- 教程-(SQL DBE、ADO连接)+(Firebird火鸟+DbExpress)+(VF DBF数据库)+(DB Paradox)
DBE 连接SQL Server显然用ADO或DBEXPRESS更有优势,起码连接起来比较方便. BDE的话可以用如下方法:(以下以Delphi7为例,其它版本的DELPHI请自己摸索一下,不过基本相 ...
- 数学概念——F 概率(经典问题)birthday paradox
F - 概率(经典问题) Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit S ...
- ZS and The Birthday Paradox
ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- C# 连接Paradox DB
Paradox数据库是一个成名于15年前的数据库,那时候Borland公司还存在.最近客户提出需求,要在一套用了12年+的应用程序上作些功能更改.这套应用程序使用Delphi+Paradox数据库. ...
随机推荐
- Python连接SQL Server数据库 - pymssql使用基础
连接数据库 pymssql连接数据库的方式和使用sqlite的方式基本相同: 使用connect创建连接对象 connect.cursor创建游标对象,SQL语句的执行基本都在游标上进行 cursor ...
- 5.15 pymysql 模块
pymysql 模块 安装 pip3 install pymysql 链接,执行sql,关闭(游标) import pymysql user= input('用户名:>>').strip( ...
- 扩展CRT +扩展LUCAS
再次感谢zyf2000超强的讲解. 扩展CRT其实就是爆推式子,然后一路合并,只是最后一个式子上我有点小疑惑,但整体还算好理解. #include<iostream> #include&l ...
- 清北学堂Day2
算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...
- JavaScript中大数相加的解法
一.两个大正整数字符串相加 在JavaScript中,数值类型满足不了大数据容量计算,可以用字符串进行操作 function add(strNum1, strNum2) { // 将传进来的数字/数字 ...
- 常用js方法整理(个人)
开头总要有点废话 今天想了下,还是分享下自己平时积累的一些实用性较高的js方法,供大家指点和评价.本想分篇介绍,发现有点画蛇添足.整理了下也没多少拿得出手的方法,自然有一些是网上看到的个人觉得很有实用 ...
- 微服务下的容器部署和管理平台Rancher
Rancher是什么 Rancher是一个开源的企业级容器管理平台.通过Rancher,企业再也不必自己使用一系列的开源软件去从头搭建容器服务平台.Rancher提供了在生产环境中使用的管理Docke ...
- EF CodeFirst系列(5)---FluentApi
FluentApi总结 1.FluentApi简介 EF中的FluentApi作用是通过配置领域类来覆盖默认的约定.在EF中,我们通过DbModelBuilder类来使用FluentApi,它的功能比 ...
- JS常用基础知识
前言:在js中dom和bom是我们操作的基本,在最初接触时候我也懵,但是后来慢慢发现其实bom就是操作浏览器,而dom就是操作文本框节点.
- jpa返回List<Map<String, Object>>相当于jdbctemplate的queryForlist
public class Test(){ @PersistenceContext(unitName = "manageFactory") protected EntityManag ...