According to Wikipedia, the well known barber paradox states like this:

The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave himself?

Actually, this paradox is directly related to the second part of Theorem 7.8 in James Munkres “Topology”. This theorem says:

Let \(A\) be a set. There is no injective map \(f: \mathcal{P}(A) \rightarrow A\), and there is no surjective map \(g: A \rightarrow \mathcal{P}(A)\).

Here \(\mathcal{P}(A)\) represents the power set of \(A\).

Mapped to the barber paradox, this theorem can be dissected as below:

Let the set \(A\) represent all the people involved in the paradox. Let \(a\) be any one of the barbers and the surjective map \(g\) associate \(a\) with a group of people \(C \in \mathcal{P}(A)\), who do not shave themselves and are \(a\)’s customers. Then, let \(B\) be a subset of \(A\) including all the barbers. Because \(g\) is surjective, this group of barbers \(B\) must also have its own pre-image, which is a singleton \(\{a_0\}\) in \(A\). According to the definition of \(g\), all the barbers in group \(B\) do not shave themselves and the only people \(a_0\) in the singleton is also a barber who provides service to all barbers in \(B\). And here we have the paradox: on one hand, because the barber \(a_0\) belongs to the subset \(B\) so \(a_0\) does not shave himself; on the other hand, the rule of assignment for the surjective map \(g\) ensures \(a_0\) really shaves himself.

Although we have an unsolvable paradox here, there is no need to bear any qualms. In reality, the barbers in \(B\) do not need a high-level barber’s barber or a barber from another city as the \(a_0\). They can simply provide mutual help to each other.

Barber paradox的更多相关文章

  1. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

  2. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  3. URAL 1774 A - Barber of the Army of Mages 最大流

    A - Barber of the Army of MagesTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/v ...

  4. 教程-(SQL DBE、ADO连接)+(Firebird火鸟+DbExpress)+(VF DBF数据库)+(DB Paradox)

    DBE 连接SQL Server显然用ADO或DBEXPRESS更有优势,起码连接起来比较方便. BDE的话可以用如下方法:(以下以Delphi7为例,其它版本的DELPHI请自己摸索一下,不过基本相 ...

  5. 数学概念——F 概率(经典问题)birthday paradox

    F - 概率(经典问题) Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  6. ZS and The Birthday Paradox

    ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...

  7. Codeforces 711E ZS and The Birthday Paradox 数学

    ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...

  8. Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学

    E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...

  9. C# 连接Paradox DB

    Paradox数据库是一个成名于15年前的数据库,那时候Borland公司还存在.最近客户提出需求,要在一套用了12年+的应用程序上作些功能更改.这套应用程序使用Delphi+Paradox数据库. ...

随机推荐

  1. js 图片瀑布流效果实现

    /** * Created by wwtliu on 14/9/5. */$(document).ready(function(){ $(window).on("load",fun ...

  2. ORACLE表数据误删除的恢复方法(提交事务也可以)

    ORACLE表数据误删除的恢复方法(提交事务也可以) 缓存加时间戳 开启行移动功能:ALTER TABLE tablename ENABLE row movement 把表还原到指定时间点:flash ...

  3. 【mysql】mysql存储引擎

    了解存储引擎我们先看下mysql的体系架构. 上图是mysql的逻辑架构图,可以看到分了几层. 第一层是大部分网路客户端工具,比如php,python  ,JDBC等,主要功能就是连接处理,授权认证等 ...

  4. [jzoj]4271. 【NOIP2015模拟10.27】魔法阵(37种转移的dp)

    题意不说 应该这辈子都不会忘记了... 这是我人生中做的最SB的一道DP题. 真的打的我心态崩了.... 可是竟然被我调出来了..... 也是没谁了... 我们设\(F[i][j][S]\)表示到第\ ...

  5. react-router v4 按需加载的配置方法

    在react项目开发中,当访问默认页面时会一次性请求所有的js资源,这会大大影响页面的加载速度和用户体验.所以添加按需加载功能是必要的,以下是配置按需加载的方法: 安装bundle-loader np ...

  6. UOJ #109「APIO2013」TASKSAUTHOR

    貌似是最入门的题答题 刚好我就是入门选手 就这样吧 UOJ #109 题意 太热了不讲了 $ Solution$ 第一个点:$ 105$个数字卡掉$ Floyd$ 直接$101$个点无出边一次询问就好 ...

  7. 设计模式七: 策略(Strategy)

    简介 策略属于行为型模式的一种,策略模式允许对象的行为或算法在运行时改变,使用不同的算法达成相同的结果或目的. 实现层面上,定义一个抽象的算法接口, 然后根据具体算法的不同定义不同的类去实现该接口, ...

  8. kerbose常用操作

    1.查看有那些用户认证 kadmin.local -q "list_principals" 2.用keytab文件进行认证 kinit -kt /root/keytab/hive. ...

  9. Alpha 事后诸葛亮(团队)

    前言 事后诸葛亮?作业名真的不好听,下一届还要沿用吗? 队名:小白吃 通向hjj博客的任意门 思考总结 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? ...

  10. linux网关下drcom web自动登陆脚本

    /etc/init.d/drcomd: #!/bin/sh # # The environment is cleared before executing this script # so the p ...