According to Wikipedia, the well known barber paradox states like this:

The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave himself?

Actually, this paradox is directly related to the second part of Theorem 7.8 in James Munkres “Topology”. This theorem says:

Let \(A\) be a set. There is no injective map \(f: \mathcal{P}(A) \rightarrow A\), and there is no surjective map \(g: A \rightarrow \mathcal{P}(A)\).

Here \(\mathcal{P}(A)\) represents the power set of \(A\).

Mapped to the barber paradox, this theorem can be dissected as below:

Let the set \(A\) represent all the people involved in the paradox. Let \(a\) be any one of the barbers and the surjective map \(g\) associate \(a\) with a group of people \(C \in \mathcal{P}(A)\), who do not shave themselves and are \(a\)’s customers. Then, let \(B\) be a subset of \(A\) including all the barbers. Because \(g\) is surjective, this group of barbers \(B\) must also have its own pre-image, which is a singleton \(\{a_0\}\) in \(A\). According to the definition of \(g\), all the barbers in group \(B\) do not shave themselves and the only people \(a_0\) in the singleton is also a barber who provides service to all barbers in \(B\). And here we have the paradox: on one hand, because the barber \(a_0\) belongs to the subset \(B\) so \(a_0\) does not shave himself; on the other hand, the rule of assignment for the surjective map \(g\) ensures \(a_0\) really shaves himself.

Although we have an unsolvable paradox here, there is no need to bear any qualms. In reality, the barbers in \(B\) do not need a high-level barber’s barber or a barber from another city as the \(a_0\). They can simply provide mutual help to each other.

Barber paradox的更多相关文章

  1. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

  2. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  3. URAL 1774 A - Barber of the Army of Mages 最大流

    A - Barber of the Army of MagesTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/v ...

  4. 教程-(SQL DBE、ADO连接)+(Firebird火鸟+DbExpress)+(VF DBF数据库)+(DB Paradox)

    DBE 连接SQL Server显然用ADO或DBEXPRESS更有优势,起码连接起来比较方便. BDE的话可以用如下方法:(以下以Delphi7为例,其它版本的DELPHI请自己摸索一下,不过基本相 ...

  5. 数学概念——F 概率(经典问题)birthday paradox

    F - 概率(经典问题) Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  6. ZS and The Birthday Paradox

    ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...

  7. Codeforces 711E ZS and The Birthday Paradox 数学

    ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...

  8. Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学

    E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...

  9. C# 连接Paradox DB

    Paradox数据库是一个成名于15年前的数据库,那时候Borland公司还存在.最近客户提出需求,要在一套用了12年+的应用程序上作些功能更改.这套应用程序使用Delphi+Paradox数据库. ...

随机推荐

  1. dl,dt,dd标签的使用

    dl就是定义一个列表 dt说明白了就是这个列表的标题dd就是内容,能缩进和UL,OL性质差不多 <dl> <dt>标题标题</dt> <dd>内容内容& ...

  2. AWS设置允许root登陆

    Refer to the following to set root login: sudo -s (to become root) vi /root/.ssh/authorized_keys Del ...

  3. [Qualcomm]A Detailed History of Qualcomm 高通的前世今生

    https://www.semiwiki.com/forum/content/7353-detailed-history-qualcomm.html

  4. Linux设备树(六 memory&chosen节点)

    六 memory&chosen节点 根节点那一节我们说过,最简单的设备树也必须包含cpus节点和memory节点.memory节点用来描述硬件内存布局的.如果有多块内存,既可以通过多个memo ...

  5. Java NIO系列教程(一) Java NIO 概述

    <I/O模型之四:Java 浅析I/O模型> 一.阻塞IO与非阻塞IO 阻塞IO: 通常在进行同步I/O操作时,如果读取数据,代码会阻塞直至有 可供读取的数据.同样,写入调用将会阻塞直至数 ...

  6. LFYZ-OJ ID: 1017 士兵站队问题

    分析 该题和"输油管道问题"类似,只不过由一维问题编程了二维问题.可以将总步数分解为移动到水平线y位置的总步数ysteps和移动到序列x, x+1, x+2, ... , x+n- ...

  7. 迅为IMX6开发板真实产品案例分享-专为研发用芯选择

    迅为IMX6开发板: Android4.4系统 Linux + Qt5.7系统 Ubuntu12.04系统 部分真实案例:HMI:3D打印机:医疗设备:工控机:触控一体机:车载终端 核心板兼容:IMX ...

  8. 菜鸟博客装饰分享CSS+HTML+js

    博客布局更改,各种百度,自己修改,搞成现在这样,有兴趣的朋友可以复制我下面的把自己博客覆盖了,然后在进行更改 不懂可加群问我:675678830 如果想开通打赏,用到js,需要在 下列中 博客侧边栏公 ...

  9. Visual Studio Code(VSCODE)语言设置

    Visual Studio Code(VSCODE)语言设置 语言设置 1.快捷键 Windows.Linux 快捷键是:ctrl+shift+p macOS 快捷键是:command + shift ...

  10. eclipse工程的jdk从1.7升到1.8后报错解决办法

    报的错误信息: org.apache.jasper.JasperException: Unable to compile class for JSP 讲Tomcat从7.0升到apache-tomca ...