According to Wikipedia, the well known barber paradox states like this:

The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave himself?

Actually, this paradox is directly related to the second part of Theorem 7.8 in James Munkres “Topology”. This theorem says:

Let \(A\) be a set. There is no injective map \(f: \mathcal{P}(A) \rightarrow A\), and there is no surjective map \(g: A \rightarrow \mathcal{P}(A)\).

Here \(\mathcal{P}(A)\) represents the power set of \(A\).

Mapped to the barber paradox, this theorem can be dissected as below:

Let the set \(A\) represent all the people involved in the paradox. Let \(a\) be any one of the barbers and the surjective map \(g\) associate \(a\) with a group of people \(C \in \mathcal{P}(A)\), who do not shave themselves and are \(a\)’s customers. Then, let \(B\) be a subset of \(A\) including all the barbers. Because \(g\) is surjective, this group of barbers \(B\) must also have its own pre-image, which is a singleton \(\{a_0\}\) in \(A\). According to the definition of \(g\), all the barbers in group \(B\) do not shave themselves and the only people \(a_0\) in the singleton is also a barber who provides service to all barbers in \(B\). And here we have the paradox: on one hand, because the barber \(a_0\) belongs to the subset \(B\) so \(a_0\) does not shave himself; on the other hand, the rule of assignment for the surjective map \(g\) ensures \(a_0\) really shaves himself.

Although we have an unsolvable paradox here, there is no need to bear any qualms. In reality, the barbers in \(B\) do not need a high-level barber’s barber or a barber from another city as the \(a_0\). They can simply provide mutual help to each other.

Barber paradox的更多相关文章

  1. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

  2. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  3. URAL 1774 A - Barber of the Army of Mages 最大流

    A - Barber of the Army of MagesTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/v ...

  4. 教程-(SQL DBE、ADO连接)+(Firebird火鸟+DbExpress)+(VF DBF数据库)+(DB Paradox)

    DBE 连接SQL Server显然用ADO或DBEXPRESS更有优势,起码连接起来比较方便. BDE的话可以用如下方法:(以下以Delphi7为例,其它版本的DELPHI请自己摸索一下,不过基本相 ...

  5. 数学概念——F 概率(经典问题)birthday paradox

    F - 概率(经典问题) Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  6. ZS and The Birthday Paradox

    ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...

  7. Codeforces 711E ZS and The Birthday Paradox 数学

    ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...

  8. Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学

    E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...

  9. C# 连接Paradox DB

    Paradox数据库是一个成名于15年前的数据库,那时候Borland公司还存在.最近客户提出需求,要在一套用了12年+的应用程序上作些功能更改.这套应用程序使用Delphi+Paradox数据库. ...

随机推荐

  1. Python量化交易

    资料整理: 1.python量化的一个github 代码 2.原理 + python基础 讲解 3.目前发现不错的两个量化交易 学习平台: 聚宽和优矿在量化交易都是在15年线上布局的,聚宽是15年的新 ...

  2. [模板] k短路

    简介 Dijkstra最短路+A*搜索. 先逆向求所有点到终点的最短路 \(dis[i]\). 定义估价函数 \(f[i] = d[i] + dis[i]\) , 其中 \(d[i]\) 表示当前起点 ...

  3. UVA 10618 Tango Tango Insurrection

    https://vjudge.net/problem/UVA-10618 题目 你想学着玩跳舞机.跳舞机的踏板上有4个箭头:上.下.左.右.当舞曲开始时,屏幕上会有一些箭头往上移动.当向上移动箭头与顶 ...

  4. Flask websocket

    websocket 概念 是一套协议,协议规定了: - 连接时需要握手 - 发送数据进行加密 - 连接之后不断开 意义 实现长轮询等操作 框架支持 - flask,gevent-websocket - ...

  5. [M$]重装或更换主板后提示“由于指定产品密钥激活次数“ office 2016

    https://answers.microsoft.com/zh-hans/msoffice/forum/all/%E6%8C%87%E5%AE%9A%E4%BA%A7%E5%93%81%E5%AF% ...

  6. beego框架的最简单登入演示

    一.controllers逻辑代码 func (c *UserController) Get() { c.TplName="login.html" } func (c *UserC ...

  7. SQL随记(三)

    1.关于package: 包的作用:可以将任何出现在块声明的语句(过程,函数,游标,游标,类型,变量)放入包中,相当于一个容器. 包的好处:在包中的(过程,函数,游标,游标,类型,变量)相当于sql/ ...

  8. Python实现聚类算法AP

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

  9. Error creating bean with name

    最近在学一个东西,要使用SSM新建一个案例,是这样滴,我有如下 DeptDAO DeptService DeptServiceImpl DeptController Dept Mybatis 首先,我 ...

  10. EF CodeFirst系列(4)--- 数据注释属性

    EFCodeFirst模式使用的是约定大于配置的编程模式,这种模式利用默认约定根据我们的领域模型建立概念模型.然后我们也可以通过配置领域类来覆盖默认约定. 覆盖默认约定主要用两种手段: 1.数据注释属 ...