<更新提示>

<第一次更新>


<正文>

树形DP入门

有些时候,我们需要在树形结构上进行动态规划来求解最优解。

例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子树的深度,形成一个子问题重叠的结构,是符合动态规划前提的。在设计动态规划算法时,一般由节点由深到浅的顺序来作为\(DP\)的阶段。\(DP\)的状态表示中,数组的第一维通常表示子树根节点的编号。大多数时候,我们用递归的形式实现树形动态规划。先在它的每个子节点上递归求出最优解,再在返回时求解当前节点的最优解。

下面我们通过一道入门例题来讲解。

没有上司的舞会(TYVJ1052 CODEVS1380)

Description

Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。

Input Format

第一行一个整数N。(1<=N<=6000)

接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)

接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。

最后一行输入0,0。

Output Format

输出最大的快乐指数。

Sample Input

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

Sample Output

5

Hint

Limitation

各个测试点1s

解析

通过分析可以发现,职员和上司之间的关系可以看作为是一个树形结构,又是最优解问题,可以尝试树形\(DP\)。

根据之前我们对树形\(DP\)的初步了解,我们先设置\(DP\)的状态,并将根节点编号作为第一维。分析题意,我们发现一个人是否参加舞会只和他的直接上司有关,所以我们可以把第二维设为\(0/1\),这样,\(f[i][0/1]\)代表以i号节点为根节点的子树结构中的最大快乐指数值之和,\(0\)代表\(i\)号职员不参加晚会,\(1\)代表\(i\)号职员参加晚会,这样的状态,是满足最优子结构的。

利用阶段和之前的状态建立关系。如果i参加晚会,则他的下属不能参加晚会,如果他不参加晚会,则他的下属可以参加晚会,当然,也可以不参加。 那么,我们就可以写出状态转移方程:

\[1.f[i][1]=h[i]+\sum_{s\in Son(i)}f[s][0]
\\2.f[i][0]=\sum_{s\in Son(i)}max(f[s][1],f[s][0])
\]

其中,\(Son(i)\)代表节点i的子节点集合。

本题当中,我们还需要找到有根树的根,即没有上司的职员,然后从他开始进行\(DP\)求解。最终,\(DP\)的目标状态是\(max(f[root][1],f[root][0])\)。时间复杂度为\(O(n)\)。

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
const int N=6000+80;
int n,h[N]={},f[N][2]={},vis[N]={};
vector < int > son[N];
inline void read(int &k)
{
int x=0,w=0;char ch;
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
k=(w?-x:x);return;
}
inline void input(void)
{
read(n);
for(int i=1;i<=n;i++)read(*(h+i));
for(int i=1;i<n;i++)
{
int f,s;
read(s),read(f);
vis[s]=true;
son[f].push_back(s);
}
}
inline void dp(int root)
{
f[root][0]=0;f[root][1]=h[root];
for(int i=0;i<son[root].size();i++)
{
int S=son[root][i];
dp(S);
f[root][0]+=max(f[S][1],f[S][0]);
f[root][1]+=f[S][0];
}
}
inline void solve(void)
{
memset(f,0,sizeof f);
int root;
for(int i=1;i<=n;i++)
{
if(!vis[i]){root=i;break;}
}
dp(root);
printf("%d\n",max(f[root][0],f[root][1]));
}
int main(void)
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
input();
solve();
return 0;
}

总结

通过一道例题,我们对树形DP建立的初步的认识。但是,在更复杂的题目中,我们需要学习更多的技巧,例如,出来自顶向下的递归以外,我们还可以运用图上DP的方法,用自底向上的拓扑序来执行树形DP,但是实现更为复杂,通常来说,这样的DP已经足够。

在更多的题目中,树是以一张N个点,N-1条边的无向图的形式给出的,这样的话我们还需要找出树的根,一般是用深搜的方法。


<后记>

『没有上司的舞会 树形DP』的更多相关文章

  1. [luogu]P1352 没有上司的舞会[树形DP]

    本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...

  2. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  3. CodeVS1380 没有上司的舞会 [树形DP]

    题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...

  4. 没有上司的舞会 树形dp

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  5. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  6. P1352 没有上司的舞会[树形dp]

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  7. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  8. 洛谷 P1352 没有上司的舞会 树形DP板子

    luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...

  9. 【codevs1380】没有上司的舞会 树形dp

    题目描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现在有个周年庆宴会,要求与会职员的快乐指数 ...

随机推荐

  1. Codeforces 446A. DZY Loves Sequences (线性DP)

    <题目链接> 题目大意: 给定一个长度为$n$的序列,现在最多能够改变其中的一个数字,使其变成任意值.问你这个序列的最长严格上升子段的长度是多少. #include <bits/st ...

  2. Array库

    /** * 查找元素在数组中出现的所有位置 * @param {要查找的数组} array * @param {要查找的元素} ele * @param {回调函数} callback */ func ...

  3. 防御xss 大致理解

    前端 发送留言内容 包含 js 代码 后台 管理员 查看 留言 代码被执行 拿到cookie 成功登陆 解决办法 对录入 进行相关的过滤处理 其他解决方法 正在学习中

  4. .Net异步关键字async/await的最终理解

    由于之前的项目中自己突然想试试异步action,于是使用了一下,突然就对异步action的执行流程以及原理及其好处产生了兴趣,再参考了一些文章之后,就做了下归类. 我们可以不需要太深入的理解底层,但是 ...

  5. TortoiseSVN--clearup清理失败解决办法

    工作中经常遇到update.commit 失败导致冲突问题,需要用clear up来清除问题,个别异常情况导致clear up失败,进入死循环!可以使用sqlite3.exe清理一下wc.db文件的队 ...

  6. C# 串口操作系列(5)--通讯库雏形

    C# 串口操作系列(5)--通讯库雏形 标签: 通讯c#数据分析byteclassstring 2010-08-09 00:07 21378人阅读 评论(73) 收藏 举报  分类: 通讯类库设计(4 ...

  7. Flink解析kafka canal未压平数据为message报错

    canal使用非flatmessage方式获取mysql bin log日志发至kafka比直接发送json效率要高很多,数据发到kafka后需要实时解析为json,这里可以使用strom或者flin ...

  8. Centos7安装zabbix-agent

    1.下载zabbix-agent wget https://mirrors.aliyun.com/zabbix/zabbix/3.4/rhel/7/x86_64/zabbix-agent-3.4.10 ...

  9. 在dcef3当中执行js代码并获得返回值

    1.如何在dcef3当中执行js代码 procedure TForm1.btnWriteZMClick(Sender: TObject);var  js: string;begin  js := 'd ...

  10. 20181115 python-第一章学习小结part4

    python第一章 流程控制 单分枝任务 If  条件: 满足条件执行动作 注意if下面的缩进,建议直接使用tab键,4个空格太难输入. 双分枝任务 If  条件: 满足条件执行动作 else: 条件 ...