想看题目的我。

我刚开始觉得这道题目好难。

直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了。

想知道这个神奇的bitset的我。

这个题目一看就感觉是莫队,其实是别人告诉我的,分块不太好弄。

减法:$$a-b=x => a=x+b$$就是在权值数组上右移x位。

加法同理。

至于乘法,直接暴力找因子,反正是\(\sqrt{n}\)复杂度。

时间复杂度显然是:\(O(\)能过\()\)


code:

#include <bits/stdc++.h>
using namespace std; const int N=100010;
struct ask {
int opt,l,r,x,ans,id,ord;
}q[N];
bitset <N> S1,S2;
int n,m,a[N],L=1,R,len,cnt[N]; bool cmp1(ask s,ask t)
{
return s.id==t.id?s.r<t.r:s.id<t.id;
} bool cmp2(ask s,ask t)
{
return s.ord<t.ord;
} void del(int i)
{
if (!--cnt[i]) S1[i]=S2[N-i]=0;
} void ins(int i)
{
if (!cnt[i]++) S1[i]=S2[N-i]=1;
} void Mo(int i)
{
while (L<q[i].l) del(a[L++]);
while (L>q[i].l) ins(a[--L]);
while (R<q[i].r) ins(a[++R]);
while (R>q[i].r) del(a[R--]);
if (q[i].opt==1) q[i].ans=(S1>>q[i].x&S1).any();
if (q[i].opt==2) q[i].ans=(S2>>(N-q[i].x)&S1).any();
if (q[i].opt==3) {
for (int j=1;j*j<=q[i].x;j++)
if (q[i].x%j==0&&S1[j]&&S1[q[i].x/j]) {
q[i].ans=1;break;
}
}
} int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
len=sqrt(n);
for (int i=1;i<=n;i++) cin>>a[i];
for (int i=1;i<=m;i++) {
cin>>q[i].opt>>q[i].l>>q[i].r>>q[i].x;
q[i].id=q[i].l/len;q[i].ord=i;
}
sort(q+1,q+1+m,cmp1);
for (int i=1;i<=m;i++) Mo(i);
sort(q+1,q+1+m,cmp2);
for (int i=1;i<=m;i++)
q[i].ans?puts("hana"):puts("bi");
return 0;
}

bitset大法好!

洛谷 P3674 小清新人渣的本愿的更多相关文章

  1. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  2. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

  3. 洛谷P3674 小清新人渣的本愿(莫队)

    传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...

  4. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  5. 【题解】Luogu P3674 小清新人渣的本愿

    原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...

  6. luogu P3674 小清新人渣的本愿

    传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...

  7. luogu P3674 小清新人渣的本愿(莫队+bitset)

    这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...

  8. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

  9. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

随机推荐

  1. 使用Ant构建简单项目

    Apache Ant主要用于Java项目的构建.为什么要使用Ant: 1)项目构建不是简单的编译,各种资源需要合理构建,例如有的类需要压缩成jar文件,有的文件需要放在指定位置,有时候需要使用配置文件 ...

  2. Node.js 本地Xhr取得Node.js服务端数据的例子

    本以为用XHR取Nodejs http出的一段文字很简单,因为xhr取值和nodejs http出文字都是好弄的,谁知一试不是这回事,中间有个关键步骤需要实现. nodejs http出文字显示在浏览 ...

  3. 模拟select控件&&显示单击的坐标&&用户按下键盘,显示keyCode

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. python中MySQLdb模块用法实例

    篇文章主要介绍了python中MySQLdb模块用法,以实例形式详细讲述了MySQLdb模块针对MySQL数据库的各种常见操作方法,非常具有实用价值,需要的朋友可以参考下 本文实例讲述了python中 ...

  5. vue笔记二

    七.列表渲染 1.示例 <ul id="example-2"> <li v-for="(item, index) in items"> ...

  6. centos内核基本调优

    一.内核(/etc/sysctl.conf) 1.加大端口号范围net.ipv4.ip_local_port_range = 10240 65000 2.tcp/ip重用及超时限制net.ipv4.t ...

  7. 标准库Allocator(三)uninitialized_fill等函数的实现

    前面我们使用了uninitialized_fill,来批量初始化某一段内存. 下面提供三个函数的实现代码,这三个代码的共同点是: 1.遇到错误,抛出异常 2.出现异常时,把之前构造的对象全部销毁 所以 ...

  8. 图解HTTP第六章:HTTP首部

    学习HTTP首部的结构和首部中各字段的用法. HTTP首部字段 使用首部字段是为了给浏览器和server提供报文主体大小.所使用的语言.认证信息等内容. 首部字段相应单个HTTP首部能够有多个值.假设 ...

  9. 51单片机 | 使用D/A转换器实现三角波发生器

    ———————————————————————————————————————————— D/A转换器 CS=0.ILE=1时,WR1信号有效时将数据总线上的信号写入8位输入锁存器 XFER=0时,W ...

  10. python 三个双引号

    有的内容被上面三个双引号和下面三个双引号包围了,这些内容不执行.即,下面aaa的部分不执行. """ aaaa; """