• 1000ms
  • 262144K
 

DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(National Olympiad in Informatics in Provinces) in Senior High School. So when in Data Structure Class in College, he is always absent-minded about what the teacher says.

The experienced and knowledgeable teacher had known about him even before the first class. However, she didn't wish an informatics genius would destroy himself with idleness. After she knew that he was so interested in ACM(ACM International Collegiate Programming Contest), she finally made a plan to teach him to work hard in class, for knowledge is infinite.

This day, the teacher teaches about trees." A tree with nn nodes, can be defined as a graph with only one connected component and no cycle. So it has exactly n-1n−1 edges..." DSM is nearly asleep until he is questioned by teacher. " I have known you are called Data Structure Master in Graph Theory, so here is a problem. "" A tree with nn nodes, which is numbered from 11 to nn. Edge between each two adjacent vertexes uu and vv has a value w, you're asked to answer the number of edge whose value is no more than kk during the path between uu and vv."" If you can't solve the problem during the break, we will call you DaShaMao(Foolish Idiot) later on."

The problem seems quite easy for DSM. However, it can hardly be solved in a break. It's such a disgrace if DSM can't solve the problem. So during the break, he telephones you just for help. Can you save him for his dignity?

Input

In the first line there are two integers n,mn,m, represent the number of vertexes on the tree and queries(2 \le n \le 10^5,1 \le m \le 10^52≤n≤105,1≤m≤105)

The next n-1n−1 lines, each line contains three integers u,v,wu,v,w, indicates there is an undirected edge between nodes uu and vv with value ww. (1 \le u,v \le n,1 \le w \le 10^91≤u,v≤n,1≤w≤109)

The next mm lines, each line contains three integers u,v,ku,v,k , be consistent with the problem given by the teacher above. (1 \le u,v \le n,0 \le k \le 10^9)(1≤u,v≤n,0≤k≤109)

Output

For each query, just print a single line contains the number of edges which meet the condition.

样例输入1

3 3

1 3 2
2 3 7
1 3 0
1 2 4
1 2 7

样例输出1

0

1
2

样例输入2

5 2

1 2 1000000000
1 3 1000000000
2 4 1000000000
3 5 1000000000
2 3 1000000000
4 5 1000000000

样例输出2

2

4

题意简述:给定一棵树,询问m次,求u->v树上路径权值≤k的条数

利用树链剖分+离线线段树进行操作

复杂度为NlogN

 #include<bits/stdc++.h>

 #define l(x) Tree[x].l
 #define r(x) Tree[x].r
 #define sum(x) Tree[x].sum
 #define ls(x) x << 1
 #define rs(x) x << 1 | 1

 ;

 ], next[MAXN << ], head[MAXN], tot;
 int fa[MAXN], son[MAXN], siz[MAXN], dep[MAXN];
 int top[MAXN], tid[MAXN], rnk[MAXN], pos;
 int eid[MAXN];

 struct segmentT {
     int l, r;
     int sum;
 } Tree[MAXN << ];

 void build(int p, int l, int r) {
     l(p) = l, r(p) = r;
     if (l == r) return;
     ;
     build(ls(p), l, mid);
     build(rs(p), mid + , r);
 }

 void change(int p, int x) {
     if (l(p) == r(p)) {
         sum(p) = ;
         return;
     }
     ;
     if (x <= mid)
         change(ls(p), x);
     else
         change(rs(p), x);
     sum(p) = sum(ls(p)) + sum(rs(p));
 }

 int ask(int p, int l, int r) {
     if (l <= l(p) && r(p) <= r) return sum(p);
     ;
     ;
     if (l <= mid) val += ask(ls(p), l, r);
     if (r > mid) val += ask(rs(p), l, r);
     return val;
 }

 void add(int u, int v) {
     ++tot, ver[tot] = v, next[tot] = head[u], head[u] = tot;
 }

 int dfs1(int u, int f) {
     dep[u] = dep[f] + , siz[u] = , son[u] = , fa[u] = f;
     for (int i = head[u]; i; i = next[i]) {
         int v = ver[i];
         if (v == f) continue;
         siz[u] += dfs1(v, u);
         eid[(i-) /  + ] = v;
         if (siz[v] > siz[son[u]]) son[u] = v;
     }
     return siz[u];
 }

 void dfs2(int u, int tp) {
     top[u] = tp, tid[u] = ++pos, rnk[pos] = u;
     if (!son[u]) return;
     dfs2(son[u], tp);
     for (int i = head[u]; i; i = next[i]) {
         int v = ver[i];
         if (v == fa[u] || v == son[u]) continue;
         dfs2(v, v);
     }
 }

 int linkquery(int u, int v) {
     ;
     while (top[u] != top[v]) {
         if (dep[top[u]] < dep[top[v]]) std::swap(u, v);
         ans += ask(, tid[top[u]], tid[u]);
         u = fa[top[u]];
     }
     if (u == v) return ans;
     if (tid[v] < tid[u]) std::swap(u, v);
     ans += ask(, tid[u] + , tid[v]);
     return ans;
 }

 struct node {
     int u, v, w, id;
     bool operator<(const node& a) const{
         return w < a.w;
     }
 } q[MAXN], p[MAXN];

 int ans[MAXN];

 int main() {
     int n, m;
     scanf("%d%d", &n, &m);
     ; i < n; i++) {
         int u, v, w;
         scanf("%d%d%d", &u, &v, &w);
         add(u, v), add(v, u);
         p[i].u = u, p[i].v = v, p[i].w = w, p[i].id = i;
     }
     ; i <= m; i++) {
         int u, v, w;
         scanf("%d%d%d", &u, &v, &w);
         q[i].u = u, q[i].v = v, q[i].w = w, q[i].id = i;
     }
     std::sort(p + , p + n);
     std::sort(q + , q + m + );

     dfs1(, );
     dfs2(, );
     build(, , n);

     int j;
     ; i <= m; i++) {
         while (j < n && p[j].w <= q[i].w) {
             change(, tid[eid[p[j].id]]), j++;
         }
         ans[q[i].id] = linkquery(q[i].u, q[i].v);
     }
     ; i <= m; i++) {
         printf("%d\n", ans[i]);
     }
     ;
 }

2019南昌邀请赛网络赛:J distance on the tree的更多相关文章

  1. 计蒜客 2019南昌邀请网络赛J Distance on the tree(主席树)题解

    题意:给出一棵树,给出每条边的权值,现在给出m个询问,要你每次输出u~v的最短路径中,边权 <= k 的边有几条 思路:当时网络赛的时候没学过主席树,现在补上.先树上建主席树,然后把边权交给子节 ...

  2. 2019南昌邀请赛网络预选赛 J.Distance on the tree(树链剖分)

    传送门 题意: 给出一棵树,每条边都有权值: 给出 m 次询问,每次询问有三个参数 u,v,w ,求节点 u 与节点 v 之间权值 ≤ w 的路径个数: 题解: 昨天再打比赛的时候,中途,凯少和我说, ...

  3. POJ-2796 & 2019南昌邀请赛网络赛 I. 区间最大min*sum

    http://poj.org/problem?id=2796 https://nanti.jisuanke.com/t/38228 背景 给定一个序列,对于任意区间,min表示区间中最小的数,sum表 ...

  4. 南昌网络赛J. Distance on the tree 树链剖分+主席树

    Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...

  5. 南昌网络赛J. Distance on the tree 树链剖分

    Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...

  6. 2019南昌网络赛 J Distance on the tree 主席树+lca

    题意 给一颗树,每条边有边权,每次询问\(u\)到\(v\)的路径中有多少边的边权小于等于\(k​\) 分析 在树的每个点上建\(1​\)到\(i​\)的权值线段树,查询的时候同时跑\(u,v,lca ...

  7. 2019年ICPC南昌网络赛 J. Distance on the tree 树链剖分+主席树

    边权转点权,每次遍历到下一个点,把走个这条边的权值加入主席树中即可. #include<iostream> #include<algorithm> #include<st ...

  8. [2019南昌邀请赛网络赛D][dp]

    https://nanti.jisuanke.com/t/38223 Xiao Ming recently indulges in match stick game and he thinks he ...

  9. 南昌邀请赛网络赛 D.Match Stick Game(dp)

    南昌邀请赛网络赛 D.Match Stick Game 题目传送门 题目就会给你一个长度为n的字符串,其中\(1<n<100\).这个字符串是一个表达式,只有加减运算符,然后输入的每一个字 ...

随机推荐

  1. resin启动时报错com.caucho.config.LineConfigException的解决

    resin启动时报以下错误: [13:32:10.120] {main} WEB-INF/web.xml:42: 'listener-class' is an unknown property of ...

  2. P1607 [USACO09FEB]庙会班车Fair Shuttle

    题目描述 Although Farmer John has no problems walking around the fair to collect prizes or see the shows ...

  3. Marionettejs

    Marionette是牵线木偶的意思,这个库是对Backbone的一次更高层次封装.这样的封装有两个目标: 减少重复的工作,提高使用Backbonejs时的生产效率给复杂应用页面提供更多的结构,以支撑 ...

  4. Python:生成器函数

    生成器函数:包含yield语句的函数: 生成器对象:生成器对象和迭代器对象行为相似,都支持可迭代接口:__next__(),若想执行生成器函数内部语句,则需要迭代协议’ A.生成器函数被调用时,并不会 ...

  5. Windows部署jenkins服务器

    本次使用的操作系统: windows server 2012 r2vs版本: vs 2015jenkins: 2.19.4 一.下载jenkins http://mirror.xmission.com ...

  6. 请问两个div之间的上下距离怎么设置

    转自:https://zhidao.baidu.com/question/344630087.html 楼上说的是一种方法,yanzilisan183 <div style="marg ...

  7. jsp 路径问题

    <script   type="text/javascript"   src="<%=ApplicationContextUtil.getBasePath(r ...

  8. Java探索之旅(11)——抽象类与接口

    1.Java数据类型       ❶不可变类,是指当创建了这个类的实例后,就不允许修改它的属性值. 它包括:         Primitive变量:boolean,byte, char, doubl ...

  9. LoadRunner 服务器(Linux、Windows) 性能指标度量说明

    服务器资源性能计数器 下表描述了可用的计数器: 监控器 度量 说明 CPU 监控器 Utilization 监测 CPU 利用率. 磁盘空间监控器 Disk space 监测可用空间 (MB) 和已用 ...

  10. Tournament

    题意: 有 $n$ 个 $K$ 维向量,若向量A只要有任意一维大于向量B,则认为A可能打败B,将n个向量一个一个加入,求问对于每次加完后的向量集合:有几个向量可能活到最后. 解法: 考虑如果A可以打败 ...