HDOJ1677(铺砖问题)
Nested Dolls
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3512 Accepted Submission(s): 1059
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN=;
struct Node{
int w,h;
}doll[MAXN];
int n;
int dp[MAXN];
bool comp(Node no1,Node no2)
{
if(no1.w!=no2.w)
{
return no1.w < no2.w;
}
else
{
return no1.h > no2.h;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&doll[i].w,&doll[i].h);
}
sort(doll,doll+n,comp);
dp[]=doll[].h;
int k=;
for(int i=;i<n;i++)
{
int j;
for(j=;j<k;j++)
{
if(dp[j]<doll[i].h)
{
dp[j]=doll[i].h;
break;
}
}
if(j==k)
dp[k++]=doll[i].h;
}
printf("%d\n",k);
}
return ;
}
HDOJ1677(铺砖问题)的更多相关文章
- dp合集 广场铺砖问题&&硬木地板
dp合集 广场铺砖问题&&硬木地板 很经典了吧... 前排:思想来自yali朱全民dalao的ppt百度文库免费下载 后排:STO朱全民OTZ 广场铺砖问题 有一个 W 行 H 列的广 ...
- 《挑战程序设计竞赛》P196 铺砖问题
题意:给定n*m格子,每个格子被染成了黑色或者白色,现在要用1*2的砖块覆盖这些格子,块与块不得重叠,且覆盖所有的白色格子,但不覆盖任意一个黑色格子,求一共有多少种覆盖方法. 思路:书上给的思路太巧妙 ...
- zjnu1745 DOMINE (状压dp+1*2铺砖)
Description Mirko has a chessboard with N rows and just three columns. Slavica has written an intege ...
- dp状态压缩-铺砖问题
题目:有一个n行m列的地板,需要用 1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? 示范: 解法:用F[i][j]存放第i行的第j状态(j为十进制,转为二进制即是状态)有多少种方案. 用 ...
- 铺砖问题 (状态压缩dp)
问题描述: 给定m×n个格子,每个格子被染成了黑色或白色.现在要用1×2的砖块覆盖这些格子,要求快于快之间互相不重叠,且覆盖了所有白色的格子(用 . 表示),但不覆盖任意一个黑色的格子(用 x 表示) ...
- poj2411铺砖——状压DP
题目:http://poj.org/problem?id=2411 状态压缩,一行的状态记为一个二进制数,从上往下逐行DP,答案输出最后一行填0的方案数. 代码如下: #include<iost ...
- [ACM] HDU 1400 Mondriaan's Dream (状态压缩,长2宽1长方形铺满)
Mondriaan's Dream Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- DP专辑
今天练了一波DP.时间紧迫我就只贴代码了. 20141120 fzu2129 http://acm.fzu.edu.cn/problem.php?pid=2129 不同的子序列个数 //#pragma ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
随机推荐
- springboot工程自动生成工具
1 springboot工程自动生成网址 http://start.spring.io/ 2 工具 Spring Boot CLI
- iOS解决导航引起视图高度问题
经过导航栏跨越的坑,总结出有两种方法可以无痕解决(前提>=iOS7版本)(TabBar与导航栏类似) 1.通过设置导航栏的透明度实现(这种方式的控制器view的起始坐标是充(0,64)开始的) ...
- Web Service概念辨析
Web Service包含两个概念. 其一是Web Service标准体系,由SOAP.WSDL.UDDI三要素组成,是平台和语言无关的.在这个概念里和WCF做比较是错误的,因为前者是行业标准,后者是 ...
- JS中如何获取<Select>中value和text的值
原文地址:JS中如何获取<Select>中value和text的值 html代码: <select id = "city" onchange="chan ...
- android客户端登录&注册的实现
MainActivity多线程的实现: package com.example.loginconnect; import java.lang.ref.WeakReference; import jav ...
- java中接口的概念及使用(补充final修饰符的使用)
接口 初期理解,可以是一个特殊的抽象类 当抽象类中的方法都是抽象的,那么该类可以通过接口的形式来表示 class 用于定义类 interface 用于定义接口 接口定义时,格式特点: 1.接口中常见的 ...
- 【leetcode刷题笔记】Linked List Cycle
Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it without using ext ...
- 什么是gitlab CI ?CI代表什么?
CI是Continuous Integration的简称,就是持续集成的意思. 就是说你代码改动了,测试了,提交了,持续集成系统会自动构建(编译等等).持续集成的理念是每个提交的版本都应该是可交付的, ...
- wget 实现web监控脚本
#!/bin/sbin timeout= times= url=https://1.1.1.1 while true;do wget --no-check-certificate --timeout= ...
- Linux Shell文件差集
file1-file2 => file3file1=/data/aaafile2=/data/bbbfile3=/data/cccsort -m <(sort $file1 | uniq) ...