HDOJ1677(铺砖问题)
Nested Dolls
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3512 Accepted Submission(s): 1059
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN=;
struct Node{
int w,h;
}doll[MAXN];
int n;
int dp[MAXN];
bool comp(Node no1,Node no2)
{
if(no1.w!=no2.w)
{
return no1.w < no2.w;
}
else
{
return no1.h > no2.h;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&doll[i].w,&doll[i].h);
}
sort(doll,doll+n,comp);
dp[]=doll[].h;
int k=;
for(int i=;i<n;i++)
{
int j;
for(j=;j<k;j++)
{
if(dp[j]<doll[i].h)
{
dp[j]=doll[i].h;
break;
}
}
if(j==k)
dp[k++]=doll[i].h;
}
printf("%d\n",k);
}
return ;
}
HDOJ1677(铺砖问题)的更多相关文章
- dp合集 广场铺砖问题&&硬木地板
dp合集 广场铺砖问题&&硬木地板 很经典了吧... 前排:思想来自yali朱全民dalao的ppt百度文库免费下载 后排:STO朱全民OTZ 广场铺砖问题 有一个 W 行 H 列的广 ...
- 《挑战程序设计竞赛》P196 铺砖问题
题意:给定n*m格子,每个格子被染成了黑色或者白色,现在要用1*2的砖块覆盖这些格子,块与块不得重叠,且覆盖所有的白色格子,但不覆盖任意一个黑色格子,求一共有多少种覆盖方法. 思路:书上给的思路太巧妙 ...
- zjnu1745 DOMINE (状压dp+1*2铺砖)
Description Mirko has a chessboard with N rows and just three columns. Slavica has written an intege ...
- dp状态压缩-铺砖问题
题目:有一个n行m列的地板,需要用 1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? 示范: 解法:用F[i][j]存放第i行的第j状态(j为十进制,转为二进制即是状态)有多少种方案. 用 ...
- 铺砖问题 (状态压缩dp)
问题描述: 给定m×n个格子,每个格子被染成了黑色或白色.现在要用1×2的砖块覆盖这些格子,要求快于快之间互相不重叠,且覆盖了所有白色的格子(用 . 表示),但不覆盖任意一个黑色的格子(用 x 表示) ...
- poj2411铺砖——状压DP
题目:http://poj.org/problem?id=2411 状态压缩,一行的状态记为一个二进制数,从上往下逐行DP,答案输出最后一行填0的方案数. 代码如下: #include<iost ...
- [ACM] HDU 1400 Mondriaan's Dream (状态压缩,长2宽1长方形铺满)
Mondriaan's Dream Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- DP专辑
今天练了一波DP.时间紧迫我就只贴代码了. 20141120 fzu2129 http://acm.fzu.edu.cn/problem.php?pid=2129 不同的子序列个数 //#pragma ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
随机推荐
- 我的Android进阶之旅------>WindowManager.LayoutParams介绍
本文转载于: http://hubingforever.blog.163.com/blog/static/171040579201175111031938/ 本文参照自: http://develop ...
- python+NLTK 自然语言学习处理七:N-gram标注
在上一章中介绍了用pos_tag进行词性标注.这一章将要介绍专门的标注器. 首先来看一元标注器,一元标注器利用一种简单的统计算法,对每个标识符分配最有可能的标记,建立一元标注器的技术称为训练. fro ...
- wechat JS-SKD (getLoaction) 定位显示百度map
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- Android Resources
Ref:Android开发最佳实践 Ref:Android高手速成--第一部分 个性化控件(View) Ref:Android高手速成--第二部分 工具库 Ref:Android高手速成--第三部分 ...
- Django与Vue语法冲突问题完美解决方法
当我们在django web框架中,使用vue的时候,会遇到语法冲突. 因为vue使用{{}},而django也使用{{}},因此会冲突. 解决办法1: 在django1.5以后,加入了标签: {% ...
- 免费好用的Diff和Merge工具大总结
总结:比较下来:diffmerge和P4merge最好用,kdiff比较专业些,支持自动merge. 一 csdiff 下载:http://www.componentsoftware.com/Prod ...
- Gateway
网关在传输层上以实现网络互连,是最复杂的网络互连设备,仅用于两个高层协议不同的网络互连.网关的结构也和路由器类似,不同的是互连层.网关既可以用于广域网互连,也可以用于局域网互连. 网关是一种充当转换重 ...
- Ubuntu15.10下***搭建及GUI客户端安装
1.依赖包安装 sudo apt-get install python-pip python-dev build-essential sudo pip install pip sudo apt-get ...
- Understanding Linux File Permissions
Although there are already a lot of good security features built into Linux-based systems, one very ...
- 算法(Algorithms)第4版 练习 1.3.37
package com.qiusongde.creative; import com.qiusongde.Queue; import edu.princeton.cs.algs4.StdOut; pu ...