bzoj 4504: K个串 可持久化线段树+堆
题目:
Description
兔子们在玩k个串的游戏。首先,它们拿出了一个长度为n的数字序列,选出其中的一
个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次)。
兔子们想知道,在这个数字序列所有连续的子串中,按照以上方式统计其所有数字之和,第
k大的和是多少。
Input
第一行,两个整数n和k,分别表示长度为n的数字序列和想要统计的第k大的和
接下里一行n个数a_i,表示这个数字序列
Output
一行一个整数,表示第k大的和
Sample Input
7 5
3 -2 1 2 2 1 3 -2
Sample Output
4
HINT
1 <= n <= 100000, 1 <= k <= 200000, 0 <= |a_i| <= 10^9数据保证存在第 k 大的和
题解:
首先我们发现,如果相同的字符的贡献可以重复计算的话,那就是超级钢琴了.
可以直接应用堆来求解
但是这道题中相同字符的贡献只统计一次,就需要我们瞎搞一下了。
对于这道题,我们可以通过可持久化线段树来处理去重的问题
怎么处理呢...
我们可以对每个点维护以这个点为右端点的所有子段和
这样我们考虑如何从i-1拓展到i
实际上我们拓展的时候只需要考虑第i位上的数字对前面做出的贡献
我们发现其实这个字符只对一部分左端点连续的字段做出贡献
具体一点,i位置上的数字只对左端点在\([last[a[i]]+1 ~ i]\)位置上的子段做出贡献
所以我们可以在可持久化线段树中通过区间修改实现\(nlogn\)处理出所有的子段
然后就是超级钢琴啦....
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const ll maxn = 210010;
struct Node{
Node *ch[2];
ll mx,id,lazy;
void update(){
mx = max(ch[0]->mx,ch[1]->mx);
if(mx == ch[0]->mx) id = ch[0]->id;
if(mx == ch[1]->mx) id = ch[1]->id;
mx += lazy;
}
}*null,*root[maxn],*it,mem[maxn*50];
inline void init(){
it = mem;null = it++;
null->ch[0] = null->ch[1] = null;
null->mx = null->id = 0;
root[0] = null;
}
Node* insert(Node *rt,ll l,ll r,ll L,ll R,ll val){
Node *p = it++;*p = *rt;
if(L == R && l == r){
p->id = l;
}
if(L <= l && r <= R){
p->lazy += val;
p->mx += val;
return p;
}
ll mid = l+r >> 1;
if(L <= mid) p->ch[0] = insert(p->ch[0],l,mid,L,R,val);
if(R > mid) p->ch[1] = insert(p->ch[1],mid+1,r,L,R,val);
p->update();return p;
}
typedef pair<ll,ll> pa;
inline pa query(Node *p,ll l,ll r,ll L,ll R){
if(L <= l && r <= R){
return make_pair(p->mx,p->id);
}
ll mid = l+r >> 1;pa x,y;
if(R <= mid){
x = query(p->ch[0],l,mid,L,R);
x.first += p->lazy;
return x;
}
if(L > mid){
y = query(p->ch[1],mid+1,r,L,R);
y.first += p->lazy;
return y;
}
x = query(p->ch[0],l,mid,L,R);
y = query(p->ch[1],mid+1,r,L,R);
x.first += p->lazy;y.first+=p->lazy;
if(x.first > y.first) return x;
else return y;
}
ll a[maxn],last[maxn],b[maxn],c[maxn];
struct num{
ll l,r;
ll val,le,ri;
bool friend operator < (const num &a,const num &b){
return a.val < b.val;
}
num(){}
num(const ll &a,const ll &b,const ll &c,const ll &d,const ll &e){
l = a;r = b;val = c;le = d;ri = e;
}
};
priority_queue<num>q;
int main(){
init();
ll n,k;read(n);read(k);
for(ll i=1;i<=n;++i){
read(a[i]);
b[i] = a[i];
}
sort(b+1,b+n+1);
for(ll i=1;i<=n;++i){
c[i] = lower_bound(b+1,b+n+1,a[i]) - b;
}
memset(last,-1,sizeof last);
for(ll i=1;i<=n;++i){
b[i] = last[c[i]];
last[c[i]] = i;
}
for(ll i=1;i<=n;++i){
root[i] = insert(root[i-1],1,n,i,i,a[i]);
if(b[i] != -1){
ll l = b[i] + 1,r = i-1;
if(l <= r){
root[i] = insert(root[i],1,n,l,r,a[i]);
}
}else{
ll l = 1,r = i-1;
if(l <= r) root[i] = insert(root[i],1,n,l,r,a[i]);
}
pa x = query(root[i],1,n,1,i);
q.push(num(x.second,i,x.first,1,i));
}
while(--k){
num x = q.top();q.pop();
ll l = x.l + 1,r = x.ri;
if(l <= r){
pa tmp = query(root[x.r],1,n,l,r);
q.push(num(tmp.second,x.r,tmp.first,l,r));
}
l = x.le;r = x.l - 1;
if(l <= r){
pa tmp = query(root[x.r],1,n,l,r);
q.push(num(tmp.second,x.r,tmp.first,l,r));
}
}
num ans = q.top();
printf("%lld\n",ans.val);
getchar();getchar();
return 0;
}
如果你不会超级钢琴...
这道题要求k大值,实际上我们可以考虑依次求出第一大、第二大、第三大、 ... 、第k大
那么问题就在于如何求解这个东西。
我们可以采用如下的策略:
将所有的以某个点为右端点的所有向左拓展出来的子段中的最大子段和扔到堆里
每次从堆中取出当前子段和最大的子段,然后将这个子段的左区间向左向右延伸得到的最大的两个子段再扔进堆里
取出来的第i的即为第i大的子段和.
bzoj 4504: K个串 可持久化线段树+堆的更多相关文章
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
- hihocoder#1046 K个串 可持久化线段树 + 堆
首先考虑二分,然后发现不可行.... 注意到\(k\)十分小,尝试从这里突破 首先用扫描线来处理出以每个节点为右端点的区间的权值和,用可持久化线段树存下来 在所有的右端点相同的区间中,挑一个权值最大的 ...
- bzoj : 4504: K个串 区间修改主席树
4504: K个串 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 268 Solved: 110[Submit][Status][Discuss] ...
- [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)
[BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...
- bzoj 4504: K个串【大根堆+主席树】
像超级钢琴一样把五元组放进大根堆,每次取一个出来拆开,(d,l,r,p,v)表示右端点为d,左端点区间为(l,r),最大区间和值为v左端点在p上 关于怎么快速求区间和,用可持久化线段树维护(主席树?) ...
- SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)
题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...
- BZOJ 3653: 谈笑风生(DFS序+可持久化线段树)
首先嘛,还是太弱了,想了好久QAQ 然后,这道题么,明显就是求sigma(size[x]) (x是y的儿子且层树小于k) 然后就可以发现:把前n个节点按深度建可持久化线段树,就能用前缀和维护了 其实不 ...
- BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)
BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...
- bzoj 3514: GERALD07加强版 lct+可持久化线段树
题目大意: N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解: 这道题考试的时候没想出来 于是便爆炸了 结果今天下午拿出昨天准备的题表准备做题的时候 题表里就有这题 ...
随机推荐
- 从xhr说起
原生xhr对象存在较多的兼容性,IE6及之前版本使用ActiveXObject对象来创建,IE7以后使用兼容版本的MSXML2.XMLHttp.MSXML2.XMLHttp3.0.MSXML2.XML ...
- 九度OJ 1000:计算a+b
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:35767 解决:15660 题目描述: 求整数a,b的和. 输入: 测试案例有多行,每行为a,b的值. 输出: 输出多行,对应a+b的结果. ...
- Lock和Condition
1 什么是可重入锁 可重入锁是说一个线程在已经获取了该锁的情况下,还可以再次获取该锁. 主要的应用场景: 可重入锁指的是在一个线程中可以多次获取同一把锁,比如:一个线程在执行一个带锁的方法,该方法中又 ...
- iOS 符号化崩溃日志
1.获取一下三个文件 1. crash报告(.crash文件) 2. 符号文件 (.dsymb文件) 3. 应用程序文件 (appName.app文件,把IPA文件后缀改为zip,然后解压,Pay ...
- hdu2563——统计问题
Problem Description 在一无限大的二维平面中,我们做例如以下如果: 1. 每次仅仅能移动一格. 2. 不能向后走(如果你的目的地是"向上",那么你能够向左走, ...
- linux 7- - watch,free,mpstat,vmstat,iostat,pidstat,df,du
十八. 和系统运行状况相关的Shell命令: 1. Linux的实时监测命令(watch): watch 是一个非常实用的命令,可以帮你实时监测一个命令的运行结果,省得一遍又一遍的 ...
- Python decorator @property
@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性 下面的链接很好的阐述了@property的概念和应用 http: ...
- DEV开发之控件NavBarControl
右键点击RunDesigner弹出如下界面鼠标先点击3或4,1,,然后点击1或2进行相应的新增或删除操作,3是分组,4是项目,4可以直接拖动到相应的分组3.属性caption:显示的名称4.NavBa ...
- Python 3 常用模块之 一
Python 3 模块 一. time模块 时间模块 在Python中,通常有这几种方式来表示时间: 1.1 时间戳(timestamp): 通常来说,时间戳表示的是从1970年1月1日00:00: ...
- UIView的概念与使用
什么是UIView UIView可以称之为控件/视图 屏幕上所有能看到的东西都是UIView 按钮(UIButton).文本(UILabel)都是控件 控件都有一些共同的属性 -- 尺寸 -- 位置 ...