HDU - 1878 欧拉回路 (连通图+度的判断)
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
题解:我们知道欧拉回路主要是有两个条件:1.连通图 。2.所有点的度都为偶数。然后此题就可解了
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int pre[10005];
int find (int x)
{
if(x==pre[x])
return x;
else
{
return pre[x]=find(pre[x]);
}
}
void merge(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
}
}
bool connect(int n)
{
int cnt=0;
for(int t=1;t<=n;t++)
{
if(pre[t]==t)
cnt++;
}
if(cnt==1)
{
return true;
}
else
{
return false;
}
}
int main()
{
int n,m;
int deg[100005];
while(scanf("%d",&n))
{
if(n==0)
{
break;
}
scanf("%d",&m);
for(int t=1;t<=n;t++)
{
pre[t]=t;
}
for(int t=1;t<=n;t++)
{
deg[t]=0;
}
int a,b;
for(int t=0;t<m;t++)
{
scanf("%d%d",&a,&b);
deg[a]++;
deg[b]++;
merge(a,b);
}
int flag=0;
for(int t=1;t<=n;t++)
{
if(deg[t]%2!=0)
{
flag=1;
}
}
if(!flag&&connect(n))
{
printf("1\n");
}
else
{
printf("0\n");
}
}
return 0;
}
HDU - 1878 欧拉回路 (连通图+度的判断)的更多相关文章
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
- HDU 1878 欧拉回路(无向图的欧拉回路)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1878 欧拉回路(联通<并查集> + 偶数点)
欧拉回路Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1878(1Y) (判断欧拉回路是否存在 奇点个数为0 + 一个联通分量 *【模板】)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1878 无向图的欧拉回路
原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...
- HDU - 1272-小希的迷宫(连通图+环的判断)
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了 ...
- hdu 1878
http://acm.hdu.edu.cn/showproblem.php?pid=1878 题意:就是判断这个图是不是一个欧拉回路的一个题, 思路:我觉得这个题可以用并查集判环加上判断每个点的度就行 ...
随机推荐
- hibernate的子查询
hibernate原话 HQL supports subqueries in the where clause. We can't think of many good uses for subque ...
- 201671010127 2016—2017—2 Java学习周结
时间真是个最公平东西,只要能够好好地利用它,它可以为我们带来我们我们所想要的东西.学习Java已经有一周了,对于Java基础知识的认识也更进一步,对Java的兴趣也愈来愈浓.实现一个Java程序,主要 ...
- saltstact的安装与配置
Saltstack是一个服务器基础架构集中化管理平台,具备配置管理.远程执行.监控等功能,人们一般习惯把saltstack比作成简化版的puppet和加强版的func.saltstack基于Pytho ...
- JavaScript 的异步和单线程
问题 Q:下面的代码是否能满足sleep效果? var t = true; setTimeout(function(){ t = false; }, 1000); while(t){ } alert( ...
- POJ 1187 陨石的秘密 (线性DP)
题意: 公元11380年,一颗巨大的陨石坠落在南极.于是,灾难降临了,地球上出现了一系列反常的现象.当人们焦急万分的时候,一支中国科学家组成的南极考察队赶到了出事地点.经过一番侦察,科学家们发现陨石上 ...
- gearman 并发的执行多个任务
Examples: Multi-Query In this example we know that we need to fetch several result sets from a datab ...
- 100725B Banal Tickets
传送门 题目大意 有2*n个位置,这些位置有的已经填上了数,有的还没有(用?表示),现在让你在还没有填上数的填0~9中的任意数,使得前n个数的乘积等于后n个数的乘积,问有多少种方案. 分析 首先这个题 ...
- CF570E Pig and Palindromes
完全不会这种类型的$dp$啊…… 考虑回文串一定是可以拆分成(偶数个字母 + 偶数个字母)或者(偶数个字母 + 一个字母 +偶数个字母),两边的偶数个字母其实是完全对称的.因为这道题回文串的长度是给定 ...
- Luogu 4552 [Poetize6] IncDec Sequence
在BZOJ上好像被权限掉了. 考虑差分,定义差分数组$b$ $$b_i = \left\{\begin{matrix} a_i \ \ \ (i == 1)\\ a_i - a_{i - 1}\ \ ...
- SDUT 3373 数据结构实验之查找一:二叉排序树
数据结构实验之查找一:二叉排序树 Time Limit: 400MS Memory Limit: 65536KB Submit Statistic Problem Description 对应给定的一 ...