欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?

Input

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结 

束。

Output

每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。

Sample Input

3 3
1 2
1 3
2 3
3 2
1 2
2 3
0

Sample Output

1
0

题解:我们知道欧拉回路主要是有两个条件:1.连通图 。2.所有点的度都为偶数。然后此题就可解了

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream> using namespace std;
int pre[10005];
int find (int x)
{
if(x==pre[x])
return x;
else
{
return pre[x]=find(pre[x]);
}
}
void merge(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
}
}
bool connect(int n)
{
int cnt=0;
for(int t=1;t<=n;t++)
{
if(pre[t]==t)
cnt++; } if(cnt==1)
{
return true;
}
else
{
return false;
} }
int main()
{
int n,m;
int deg[100005];
while(scanf("%d",&n))
{ if(n==0)
{
break;
}
scanf("%d",&m);
for(int t=1;t<=n;t++)
{
pre[t]=t;
}
for(int t=1;t<=n;t++)
{
deg[t]=0;
}
int a,b;
for(int t=0;t<m;t++)
{
scanf("%d%d",&a,&b);
deg[a]++;
deg[b]++;
merge(a,b);
}
int flag=0;
for(int t=1;t<=n;t++)
{
if(deg[t]%2!=0)
{
flag=1;
}
}
if(!flag&&connect(n))
{
printf("1\n");
}
else
{
printf("0\n");
} }
return 0;
}

HDU - 1878 欧拉回路 (连通图+度的判断)的更多相关文章

  1. HDU 1878 欧拉回路(判断欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...

  2. HDU 1878 欧拉回路

    并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...

  3. HDU 1878 欧拉回路 图论

    解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...

  4. HDU 1878 欧拉回路(无向图的欧拉回路)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. hdu 1878 欧拉回路(联通<并查集> + 偶数点)

    欧拉回路Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1878(1Y) (判断欧拉回路是否存在 奇点个数为0 + 一个联通分量 *【模板】)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. hdu 1878 无向图的欧拉回路

    原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...

  8. HDU - 1272-小希的迷宫(连通图+环的判断)

    上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了 ...

  9. hdu 1878

    http://acm.hdu.edu.cn/showproblem.php?pid=1878 题意:就是判断这个图是不是一个欧拉回路的一个题, 思路:我觉得这个题可以用并查集判环加上判断每个点的度就行 ...

随机推荐

  1. 使用线程池优化Echo模型

    在上一篇文章中 http://www.cnblogs.com/gosaint/p/8492356.html         我阐述了使用线程为每一个客户端创建一个工作线程来负责任务的执行.但是会存在如 ...

  2. [hdu1251]统计难题(trie模板题)

    题意:返回字典中所有以测试串为前缀的字符串总数. 解题关键:trie模板题,由AC自动机的板子稍加改造而来. #include<cstdio> #include<cstring> ...

  3. [chmod]linux中给文件增加权限

    chmod命令 1.chmod u+x file.sh 2.sudo chmod 777  文件名 注: 如果给所有人添加可执行权限:chmod a+x 文件名:如果给文件所有者添加可执行权限:chm ...

  4. JavaScript的self和this使用小结

    一.self这个非常简单.我们知道,打开任何一个网页,浏览器会首先创建一个窗口,这个窗口就是一个window对象,也是js运行所依附的全局环境对象和全局作用域对象.self 指窗口本身,它返回的对象跟 ...

  5. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-006BitonicMax

    package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; /*** ...

  6. SDUT 1489 求二叉树的先序遍历 (中序后序还原二叉树)

    求二叉树的先序遍历 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Discuss Problem Description  已知一 ...

  7. 罗技K380连接Win10(MacBookPro双系统)系统失败

    问题描述: MacBook Pro 双系统,先连接MacOS使用没问题,切换至Win10系统,连接失败. 解决方案: 进入MacOS,打开蓝牙设置,将已经连接的键盘删除,重新进入Win10系统,再连接 ...

  8. iOS逆向编程工具篇:class-dump

    class-dump是用来dump目标对象的class信息的工具,利用OC的runtime特性,将存储在Mach-O文件中的@interface.@protocol信息提取出来,并生成对应的.h文件. ...

  9. ASP.NET Core 中的中间件

    前言   由于是第一次写博客,如果您看到此文章,希望大家抱着找错误.批判的心态来看. sky! 何为中间件? 在 ASP.NET Framework 中应该都知道请求管道.可参考:浅谈 ASP.NET ...

  10. 20164305 徐广皓 Exp6 信息搜集与漏洞扫描

    信息搜集技术与隐私保护 间接收集 无物理连接,不访问目标,使用第三方信息源 使用whois/DNS获取ip 使用msf中的辅助模块进行信息收集,具体指令可以在auxiliary/gather中进行查询 ...