HDU - 1878 欧拉回路 (连通图+度的判断)
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
题解:我们知道欧拉回路主要是有两个条件:1.连通图 。2.所有点的度都为偶数。然后此题就可解了
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int pre[10005];
int find (int x)
{
if(x==pre[x])
return x;
else
{
return pre[x]=find(pre[x]);
}
}
void merge(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
}
}
bool connect(int n)
{
int cnt=0;
for(int t=1;t<=n;t++)
{
if(pre[t]==t)
cnt++;
}
if(cnt==1)
{
return true;
}
else
{
return false;
}
}
int main()
{
int n,m;
int deg[100005];
while(scanf("%d",&n))
{
if(n==0)
{
break;
}
scanf("%d",&m);
for(int t=1;t<=n;t++)
{
pre[t]=t;
}
for(int t=1;t<=n;t++)
{
deg[t]=0;
}
int a,b;
for(int t=0;t<m;t++)
{
scanf("%d%d",&a,&b);
deg[a]++;
deg[b]++;
merge(a,b);
}
int flag=0;
for(int t=1;t<=n;t++)
{
if(deg[t]%2!=0)
{
flag=1;
}
}
if(!flag&&connect(n))
{
printf("1\n");
}
else
{
printf("0\n");
}
}
return 0;
}
HDU - 1878 欧拉回路 (连通图+度的判断)的更多相关文章
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
- HDU 1878 欧拉回路(无向图的欧拉回路)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1878 欧拉回路(联通<并查集> + 偶数点)
欧拉回路Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1878(1Y) (判断欧拉回路是否存在 奇点个数为0 + 一个联通分量 *【模板】)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1878 无向图的欧拉回路
原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...
- HDU - 1272-小希的迷宫(连通图+环的判断)
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了 ...
- hdu 1878
http://acm.hdu.edu.cn/showproblem.php?pid=1878 题意:就是判断这个图是不是一个欧拉回路的一个题, 思路:我觉得这个题可以用并查集判环加上判断每个点的度就行 ...
随机推荐
- 向vsftp服务器上传文件报“550 Permission denied”错误的解决办法
上传文件: ftp> mput db.iso 550 Permission denied 原因:vsftp默认配置不允许上传文件. 解决:修改/etc/vsftpd.conf 将“write_e ...
- python的面向对象编程
面向对象编程是一种程序的范式,它把程序看成是对不同对象的相互调用,对现实世界建立的一种模型. 面向对象编程的基本思想,类和实例.类用于定义抽象对象,实例根据类的定义被创建出来. 在python当中我们 ...
- 使用网络用户命令行工具的/passwordreq:yes
提示:"新建域时,本地administrator帐户将成为域administrator账户.无法新建域,因为本地administrator账户密码不符合要求.目前,本地administrat ...
- 关于service和线程的区别
主要有两方面,访问控制和功能区别 首先,service是运行在主线程上的,并不是一个新的线程 其次,service在运行的时候可以被多个activity访问和控制,而线程是不可以的 最后,servic ...
- ES02 变量、数组、对象、方法
1 变量 1.1 变量的声明 利用var关键字来声明变量,例如: var a = 100; <!DOCTYPE html> <html> <head> <me ...
- android sdk更新源
什么是Android SDK: SDK:(software development kit)软件开发工具包.被软件开发工程师用于为特定的软件包.软件框架.硬件平台.操作系统等建立应用软件的开发工具的集 ...
- rvm 安装后的补充工作:source $HOME/.profile
rvm安装后会在 $HOME/.bash_profile 文件追加一行代码: [[ -s "$HOME/.rvm/scripts/rvm" ]] && source ...
- 使用Notepad++与Dev_c++编译
1. 安装Dev.打开DEV安装目录下的 D:\app\DevCpp\Dev-Cpp\MinGW64\bin(因人而异). 2.添加环境变量,测试. 将上述路径D:\app\DevCpp\Dev-Cp ...
- 【monkey测试】Fragment not attached to Activity
monkey测试跑出了一个异常: // CRASH: packgeName (pid) // Short Msg: java.lang.IllegalStateException // Long Ms ...
- [C# 线程处理系列]专题四:线程同步
目录: 一.线程同步概述 二.线程同步的使用 三 .总结 一.线程同步概述 前面的文章都是讲创建多线程来实现让我们能够更好的响应应用程序,然而当我们创建了多个线程时,就存在多个线程同时访问一个共享的资 ...