[NOI2009]管道取珠(DP)
因为他要让我们求出每种状态出现次数的平方和,这样模拟两人取球的时候,设第一个人取球的方案为A,第二个人取球的方案为B,
这样对于每一个A,都有C(n + m , n)种B的方案与之对应,所以这样求出来正好是每种状态出现次数的平方和
所以方案数的平方和转化为选两次结果一样的方案数
我们用f[i][j][k][l]表示两个人同时取出了i+j个球,第一个人第1行取了i个球,第二行取了j个球,第二个人第1行取了k个球,第二行取了l个球
省掉一维,再用滚动数组
/*
f[i][j][k]表示第1种方案第一行选了i个,第二行选了j个
第二种方案第一行选了k个,第二行选了i+j-k个
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 505 ;
const int mod = 1024523 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m ;
int f[2][M][M] , cur ;
char up[M] , dw[M] ;
int main() {
n = read() ; m = read() ;
scanf("%s",up + 1) ; scanf("%s",dw + 1) ;
f[0][0][0] = 1 ;
for(int i = 0 , l ; i <= n ; i ++ , cur ^= 1)
for(int j = 0 ; j <= m ; j ++)
for(int k = 0 ; k <= n ; k ++) {
if(f[cur][j][k] == 0) continue ;
l = i + j - k ;
if(up[i + 1] == up[k + 1])
f[cur ^ 1][j][k + 1] = (f[cur ^ 1][j][k + 1] + f[cur][j][k])%mod ;
if(up[i + 1] == dw[l + 1])
f[cur ^ 1][j][k] = (f[cur ^ 1][j][k] + f[cur][j][k])%mod ;
if(dw[j + 1] == up[k + 1])
f[cur][j + 1][k + 1] = (f[cur][j + 1][k + 1] + f[cur][j][k])%mod ;
if(dw[j + 1] == dw[l + 1])
f[cur][j + 1][k] = (f[cur][j + 1][k] + f[cur][j][k])%mod ;
f[cur][j][k] = 0 ;//卡常技巧,滚动数组时直接清0,避免memset
}
printf("%d\n",f[cur][m][n]) ;
return 0 ;
}
[NOI2009]管道取珠(DP)的更多相关文章
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- NOI2009 管道取珠 神仙DP
原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...
- BZOJ 1566 管道取珠(DP)
求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...
- 【题解】NOI2009管道取珠
又是艰难想题的一晚,又是做不出来的一题 (:д:) 好想哭啊…… 这题最关键的一点还是提供一种全新的想法.看到平方和这种东西,真的不好dp.然而我一直陷在化式子的泥潭中出不来.平方能够联想到什么?原本 ...
- BZOJ1566 [NOI2009]管道取珠 【dp】
题目 输入格式 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行为一个AB字符串, ...
随机推荐
- 前端seo小结,网页代码优化
seo的目的:提高网站流量 search engine optimization 搜索引擎优化seo search engine marketing 搜索引擎营销sem 权重10个等级 等级越大,权重 ...
- Android CTS(frome google)
Compatibility Test Suite How does the CTS work? The Compatibility Test Suite (CTS) is a free, commer ...
- python爬虫(6)--Requests库的用法
1.安装 利用pip来安装reques库,进入pip的下载位置,打开cmd,默认地址为 C:\Python27\Scripts 可以看到文件中有pip.exe,直接在上面输入cmd回车,进入命令行界面 ...
- Bind和Eval的不同用法 (转)
今天在用DataList的模板列的时候习惯性地像在03中那样去给模板列的绑定字段加个处理函数: < asp:Label ID = " Label1 " runat = &qu ...
- [chmod]linux中给文件增加权限
chmod命令 1.chmod u+x file.sh 2.sudo chmod 777 文件名 注: 如果给所有人添加可执行权限:chmod a+x 文件名:如果给文件所有者添加可执行权限:chm ...
- css知多少(11)——position(转)
css知多少(11)——position 1. 引言 本文将用一篇文章介绍position(定位),在学习position之前,我们应该去思考一个问题:什么情况下我们需要定位?如果没有定位将无法满 ...
- php学习笔记-while循环
while(condition) { func(); //break the loop } while循环的执行顺序是先判断condition是不是true,如果是true,那么就执行while循环体 ...
- Luogu 3586 [POI2015]LOG
考虑离散化后开权值线段树. 设序列中不小于$s$的数有$cnt$个,小于$s$的数的和为$sum$. 那么操作Z能成功的充要条件是$sum \geq (c - cnt) * s$. 如果序列中不小于$ ...
- 精美3D中国象棋
本人2013年的巅峰之作,现在已经完全免费放送.象棋界面的史诗革命.当前下载版本仅支持Windows 平台. 操作: 方向键的 上,下,左,右 控制棋盘翻转.Home 键回到初始状态,End按键回到平 ...
- Person的delete请求--------详细过程
首先,数据库的增删改查都是在PersonRepository中实现,因此,直接进入PersonRepository,找到其父类,搜索delete. @Override @TransactionalMe ...