There are N towns on a plane. The i-th town is located at the coordinates (xi,yi). There may be more than one town at the same coordinates.

You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|ac|,|bd|) yen (the currency of Japan). It is not possible to build other types of roads.

Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this?

Constraints

  • 2≤N≤105
  • 0≤xi,yi≤109
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N
x1 y1
x2 y2
:
xN yN

Output

Print the minimum necessary amount of money in order to build roads so that it will be possible to travel between every pair of towns by traversing roads.

Sample Input 1

3
1 5
3 9
7 8

Sample Output 1

3

Build a road between Towns 1 and 2, and another between Towns 2 and 3. The total cost is 2+1=3 yen.

Sample Input 2

6
8 3
4 9
12 19
18 1
13 5
7 6

Sample Output 2

8

两点之间的距离定义min( |a-b|,|c-d| ),就是切比雪夫距离;
我们要求这样的定义下的最小生成树;
考虑Kruskal算法:每次选取距离最小的边加入其中且保证不能出现环;
那么我们分别按照x,y进行排序;
最后再统一排序即可;
此时进行普通的Kruskal即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int tot;
struct node {
int x, y;
int d;
node(){}
node(int x,int y,int d):x(x),y(y),d(d){} }nd[maxn],nd2[maxn]; bool cmp(node a, node b) {
return a.x < b.x;
}
bool cmp2(node a, node b) {
return a.y < b.y;
} bool cmp3(node a, node b) {
return a.d < b.d;
} int fa[maxn];
void init() {
for (int i = 0; i <= n; i++)fa[i] = i;
}
int findfa(int x) {
if (x == fa[x])return x;
return fa[x] = findfa(fa[x]);
} void merge(int u, int v) {
int p = findfa(u);
int q = findfa(v);
if (p != q) {
fa[p] = q;
}
} bool chk(int x, int y) {
if (findfa(x) == findfa(y))return true;
else return false;
} int kruskal() {
int sum = 0;
init();
for (int i = 0; i < tot; i++) {
node tmp = nd2[i];
if (tmp.d == 0)merge(tmp.x, tmp.y);
if (!chk(tmp.x, tmp.y)) {
merge(tmp.x, tmp.y); sum += tmp.d;
}
}
return sum;
} int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) {
rdint(nd[i].x); rdint(nd[i].y);
nd[i].d = i;
}
tot = 0;
sort(nd + 1, nd + 1 + n, cmp);
for (int i = 2; i <= n; i++) {
nd2[tot++] = node(nd[i].d, nd[i - 1].d, nd[i].x - nd[i - 1].x);
}
sort(nd+1, nd + n+1, cmp2);
for (int i = 2; i <= n; i++) {
nd2[tot++] = node(nd[i].d, nd[i - 1].d, nd[i].y - nd[i - 1].y);
}
sort(nd2, nd2 + tot, cmp3);
int sum = kruskal();
cout << sum << endl;
return 0;
}

atcoder 2643 切比雪夫最小生成树的更多相关文章

  1. Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]

    题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...

  2. AtCoder Regular Contest 076

    在湖蓝跟衡水大佬们打的第二场atcoder,不知不觉一星期都过去了. 任意门 C - Reconciled? 题意:n只猫,m只狗排队,猫与猫之间,狗与狗之间是不同的,同种动物不能相邻排,问有多少种方 ...

  3. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  4. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  5. 【Atcoder】CODE FESTIVAL 2017 qual A D - Four Coloring

    [题意]给定h,w,d,要求构造矩阵h*w满足任意两个曼哈顿距离为d的点都不同色,染四色. [算法]结论+矩阵变换 [题解] 曼哈顿距离是一个立着的正方形,不方便处理.d=|xi-xj|+|yi-yj ...

  6. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  7. AtCoder ARC 076D - Built?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_b 本题是一个图论问题——Manhattan距离最小生成树(MST). 在一个平面网格上有n个格点, ...

  8. AtCoder,Codeforces做题记录

    AGC024(5.20) 总结:猜结论,“可行即最优” B: 给定一个n的排列,每次可以将一个数移到开头或结尾,求变成1,2,...,n所需的最小步数. 找到一个最长的i,i+1,...,j满足在排列 ...

  9. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

随机推荐

  1. Android 4学习(5):概述 - Android应用程序的生命周期

    参考:<Professional Android 4 Application Development> Android应用程序生命周期 Android应用程序无法控制自己的生命周期,因此它 ...

  2. DDD学习笔录——简介DDD的战术模式、问题空间和解空间

    DDD的战术模式 DDD的战术模式(也称为模型构造块)是一个帮助创建 用于复杂有界上下文的有效模型的 模式集合. 也就是我们常说的设计模式. 问题空间 问题空间将问题域提炼成更多可管理的子域,是真对于 ...

  3. c#指定程序运行指定文件(太好了,终于找到了)

    System.Diagnostics.Process.Start(@"Notepad.exe", "e:\\a.txt"); System.Diagnostic ...

  4. vmstat详细说明

    下面是关于Unix下vmstat命令的详细介绍,收录在这里,以备日后参考 vmstat是用来实时查看内存使用情况,反映的情况比用top直观一些.作为一个CPU监视器,vmstat命令比iostat命令 ...

  5. OSI七层网络模型与TCP/IP四层网络模型

    1.OSI网络7层模型 网络协议设计者不应当设计一个单一.巨大的协议来为所有形式的通信规定完整的细节,而应把通信问题划分成多个小问题,然后为每一个小问题设计一个单独的协议.这样做使得每个协议的设计.分 ...

  6. 下拉框value ,selectedIndex

  7. ReactNative安装配置

    1.安装jdk1.8,配置好path, javac,java -version 2.安装设置Android sdk a. 解压:D:\www\sdk\adt-bundle-windows-x86_64 ...

  8. loj10104 [POI 2008]Blockade

    传送门 分析 我们知道对于一个割点,我们如果去掉它就会使原来的图被分为若干块,则这是我们将所有块包含的点的个数两两相乘即可,而如果不是割点则对于图的连通性没有影响.注意在最后要加上2*(n-1)表示去 ...

  9. oracle获取列的备注和数据类型

    select column_name, data_type, data_precision, data_scale, nvl((select t_s.comments from all_col_com ...

  10. Excel神技能

    按住ALT再按数字41420就可打对号 按住ALT再按数字41409就可打叉号