link

这题在线得写树套树,所以我写的离线+树状数组

对于每个询问,Ans=\(\max_{j=1}^n{|a_j-x_i|+|b_j-y_i|+t_i}\)

拆成四种情况

\(x_i\le a_j,y_i\le b_j: a_j+b_j+t_i-x_i-y_i\)

\(x_i\le a_j,y_i> b_j: a_j-b_j+t_i-x_i+y_i\)

\(x_i> a_j,y_i\le b_j: -a_j+b_j+t_i+x_i-y_i\)

\(x_i> a_j,y_i> b_j: -a_j-b_j+t_i+x_i+y_i\)

第一维直接排序(不用离散化但是我智障我离散化了)

第二维分四种情况树状数组即可,由于查询的是前缀、后缀最值(而不是区间最值)所以直接树状数组维护最值即可

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std; struct shot { int x, y, t; } a[100010];
struct shit { int a, b, id; } q[100010]; long long upd1[100010], upd2[100010], upd3[100010], upd4[100010]; int N, M;
int disc1[200010], disc2[200010], A[100010], B[100010], x[100010], y[100010], tot1, tot2;
long long ans[100010], fenwick[200010]; template<class _T> void chkmin(_T &a, _T b) { if (b < a) a = b; }
void chenge(int x, long long k) { for (int i = x; i <= tot2; i += i & -i) chkmin(fenwick[i], k); }
long long query(int x)
{
long long res = 0x3f3f3f3f3f3f3f3fLL;
for (int i = x; i > 0; i &= i - 1) chkmin(res, fenwick[i]);
return res;
} int main()
{
scanf("%d%d", &N, &M);
for (int i = 1; i <= N; i++) scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].t), disc1[++tot1] = a[i].x, disc2[++tot2] = a[i].y;
for (int i = 1; i <= M; i++) scanf("%d%d", &q[i].a, &q[i].b), disc1[++tot1] = q[i].a, disc2[++tot2] = q[i].b, q[i].id = i;
sort(disc1 + 1, disc1 + 1 + tot1), tot1 = unique(disc1 + 1, disc1 + tot1 + 1) - disc1 - 1;
sort(disc2 + 1, disc2 + 1 + tot2), tot2 = unique(disc2 + 1, disc2 + tot2 + 1) - disc2 - 1;
sort(a + 1, a + 1 + N, [](const shot &a, const shot &b) { return a.x < b.x; });
sort(q + 1, q + 1 + M, [](const shit &a, const shit &b) { return a.a < b.a; });
for (int i = 1; i <= N; i++)
{
x[i] = lower_bound(disc1 + 1, disc1 + 1 + tot1, a[i].x) - disc1;
y[i] = lower_bound(disc2 + 1, disc2 + 1 + tot2, a[i].y) - disc2;
upd1[i] = (long long)a[i].t - a[i].x - a[i].y;
upd2[i] = (long long)a[i].t - a[i].x + a[i].y;
upd3[i] = (long long)a[i].t + a[i].x - a[i].y;
upd4[i] = (long long)a[i].t + a[i].x + a[i].y;
}
for (int i = 1; i <= M; i++)
{
ans[q[i].id] = abs(q[i].a - q[i].b);
A[i] = lower_bound(disc1 + 1, disc1 + 1 + tot1, q[i].a) - disc1;
B[i] = lower_bound(disc2 + 1, disc2 + 1 + tot2, q[i].b) - disc2;
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = 1, j = 1; i <= M; i++)
{
while (j <= N && x[j] <= A[i]) chenge(y[j], upd1[j]), j++;
chkmin(ans[q[i].id], query(B[i]) + q[i].a + q[i].b);
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = 1, j = 1; i <= M; i++)
{
while (j <= N && x[j] <= A[i]) chenge(tot2 - y[j] + 1, upd2[j]), j++;
chkmin(ans[q[i].id], query(tot2 - B[i] + 1) + q[i].a - q[i].b);
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = M, j = N; i >= 1; i--)
{
while (j >= 1 && x[j] >= A[i]) chenge(y[j], upd3[j]), j--;
chkmin(ans[q[i].id], query(B[i]) - q[i].a + q[i].b);
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = M, j = N; i >= 1; i--)
{
while (j >= 1 && x[j] >= A[i]) chenge(tot2 - y[j] + 1, upd4[j]), j--;
chkmin(ans[q[i].id], query(tot2 - B[i] + 1) - q[i].a - q[i].b);
}
for (int i = 1; i <= M; i++) printf("%lld\n", ans[i]);
return 0;
}

luogu4088 [USACO18FEB]Slingshot的更多相关文章

  1. 洛谷P4088 [USACO18FEB]Slingshot

    题面 大意:给出n个弹弓,可以用ti的时间把xi位置运到yi,在给出m组询问,求xj到yj最小时间. sol:首先如果不用弹弓,时间应为abs(xj-yj).否则时间就是abs(xi-xj)+abs( ...

  2. [USACO18FEB]Slingshot

    题意可化为: 在二维平面中有n个点,坐标为\((x_i,y_i)\),点权为\(t_i\). 现有m个询问,每次给定点\((x,y)\),求\(\min\{|x-x_i|+|y-y_i|+t_i,|y ...

  3. P4088 [USACO18FEB]Slingshot 线段树+扫描线

    \(\color{#0066ff}{ 题目描述 }\) Farmer John最讨厌的农活是运输牛粪.为了精简这个过程,他产生了一个新奇的想法:与其使用拖拉机拖着装满牛粪的大车从一个地点到另一个地点, ...

  4. LUOGU P4088 [USACO18FEB]Slingshot(线段树)

    传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...

  5. 洛谷 P4088 [USACO18FEB] Slingshot P(线段树+二维数点)

    题目链接 题意:有一个数轴,上面有 \(n\) 个传送门,使用第 \(i\) 个传送门,你可以从 \(x_i\) 走到 \(y_i\),花费的时间为 \(t_i\) 秒.你的速度为 \(1\) 格/秒 ...

  6. FOJ 1683 纪念SlingShot(矩阵快速幂)

    C - 纪念SlingShot Description 已知 F(n)=3 * F(n-1)+2 * F(n-2)+7 * F(n-3),n>=3,其中F(0)=1,F(1)=3,F(2)=5, ...

  7. 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G

    题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...

  8. FZU 1683 纪念SlingShot(矩阵水)

    纪念SlingShot [题目链接]纪念SlingShot [题目类型]矩阵水 &题解: 这代码调了十多分钟,结果是Mul没返回值,好zz啊. 令sum(n)=sum(n-1)+f(n) 那么 ...

  9. fuzhou 1683 纪念SlingShot ***

    Problem 1683 纪念SlingShot Accept: 361    Submit: 1287Time Limit: 1000 mSec    Memory Limit : 32768 KB ...

随机推荐

  1. Windows Backdoor Tips

    名称:在用户登录时,运行这些程序 位置: Computer Configuration\\Policies\\Administrative Templates\\System\\Logon\\ 中 d ...

  2. 部署和调优 1.1 nfs部署和优化-1

    NFS服务会经常用到,用于在网络上共享存储.举一个例子来说明一下 NFS .假如有三台机器 A.B.C,它们需要访问同一个目录,目录中都是图片,传统的做法是把这些图片分别放到 A.B.C.但是,若使用 ...

  3. myeclipse10启动service窗口报异常

    1:找到与之对应的tomcat: 2:删掉“.metadata/.plugins/org.eclipse.core.runtime/.settings/ com.genuitec.eclipse.as ...

  4. eclipse 报错:GC overhead limit exceeded

    还是eclipse内存问题 修改eclipse.ini -Xms512m -Xmx1024m 必要的情况下, 添加 -XX:MaxPermSize=1024M  表示在编译文件时一直占有最大内存

  5. 如何取消WIN7的共享密码

    如何取消WIN7的共享密码 把你的Guest帐号的密码设为空.如何设置呢? 1.右键“计算机”-“管理”-“本地用户和组”-“用户”-右键帐号“Guest”-“设置密码”,然后直接点击确定,不予设置密 ...

  6. Ros学习service——小海龟

    rosservice 服务(services)是节点之间通讯的另一种方式.服务允许节点发送请求(request) 并获得一个响应(response) rosservice list 输出可用服务的信息 ...

  7. resize和reserve的区别

    转自http://blog.csdn.net/jackywgw/article/details/6248342 首先必须弄清楚两个概念: 1.capacity 指容器在分配新的存储空间之前能存储的元素 ...

  8. 长城防火墙(GFW)

    一.简介 中国防火长城,官方名为金盾工程,是由政府运作的一个互联网审查监控项目.在其管辖互联网内部建立的多套网络审查系统的总称,包括相关行政审查系统.其英文名称Great Firewall of Ch ...

  9. cakephp静态资源404

    location ~ /\.(css|js|woff|ttf|gif|jpg|jpeg|png|bmp|swf) { rewrite ^/$/(.*)$ /$/app/webroot/$ last; ...

  10. c++调用shell命令

    system()这个函数就不说了,不能读取返回值. #include<cstdio> int main() { FILE *fp; ]={}; fp=popen("ssh roo ...