link

这题在线得写树套树,所以我写的离线+树状数组

对于每个询问,Ans=\(\max_{j=1}^n{|a_j-x_i|+|b_j-y_i|+t_i}\)

拆成四种情况

\(x_i\le a_j,y_i\le b_j: a_j+b_j+t_i-x_i-y_i\)

\(x_i\le a_j,y_i> b_j: a_j-b_j+t_i-x_i+y_i\)

\(x_i> a_j,y_i\le b_j: -a_j+b_j+t_i+x_i-y_i\)

\(x_i> a_j,y_i> b_j: -a_j-b_j+t_i+x_i+y_i\)

第一维直接排序(不用离散化但是我智障我离散化了)

第二维分四种情况树状数组即可,由于查询的是前缀、后缀最值(而不是区间最值)所以直接树状数组维护最值即可

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std; struct shot { int x, y, t; } a[100010];
struct shit { int a, b, id; } q[100010]; long long upd1[100010], upd2[100010], upd3[100010], upd4[100010]; int N, M;
int disc1[200010], disc2[200010], A[100010], B[100010], x[100010], y[100010], tot1, tot2;
long long ans[100010], fenwick[200010]; template<class _T> void chkmin(_T &a, _T b) { if (b < a) a = b; }
void chenge(int x, long long k) { for (int i = x; i <= tot2; i += i & -i) chkmin(fenwick[i], k); }
long long query(int x)
{
long long res = 0x3f3f3f3f3f3f3f3fLL;
for (int i = x; i > 0; i &= i - 1) chkmin(res, fenwick[i]);
return res;
} int main()
{
scanf("%d%d", &N, &M);
for (int i = 1; i <= N; i++) scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].t), disc1[++tot1] = a[i].x, disc2[++tot2] = a[i].y;
for (int i = 1; i <= M; i++) scanf("%d%d", &q[i].a, &q[i].b), disc1[++tot1] = q[i].a, disc2[++tot2] = q[i].b, q[i].id = i;
sort(disc1 + 1, disc1 + 1 + tot1), tot1 = unique(disc1 + 1, disc1 + tot1 + 1) - disc1 - 1;
sort(disc2 + 1, disc2 + 1 + tot2), tot2 = unique(disc2 + 1, disc2 + tot2 + 1) - disc2 - 1;
sort(a + 1, a + 1 + N, [](const shot &a, const shot &b) { return a.x < b.x; });
sort(q + 1, q + 1 + M, [](const shit &a, const shit &b) { return a.a < b.a; });
for (int i = 1; i <= N; i++)
{
x[i] = lower_bound(disc1 + 1, disc1 + 1 + tot1, a[i].x) - disc1;
y[i] = lower_bound(disc2 + 1, disc2 + 1 + tot2, a[i].y) - disc2;
upd1[i] = (long long)a[i].t - a[i].x - a[i].y;
upd2[i] = (long long)a[i].t - a[i].x + a[i].y;
upd3[i] = (long long)a[i].t + a[i].x - a[i].y;
upd4[i] = (long long)a[i].t + a[i].x + a[i].y;
}
for (int i = 1; i <= M; i++)
{
ans[q[i].id] = abs(q[i].a - q[i].b);
A[i] = lower_bound(disc1 + 1, disc1 + 1 + tot1, q[i].a) - disc1;
B[i] = lower_bound(disc2 + 1, disc2 + 1 + tot2, q[i].b) - disc2;
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = 1, j = 1; i <= M; i++)
{
while (j <= N && x[j] <= A[i]) chenge(y[j], upd1[j]), j++;
chkmin(ans[q[i].id], query(B[i]) + q[i].a + q[i].b);
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = 1, j = 1; i <= M; i++)
{
while (j <= N && x[j] <= A[i]) chenge(tot2 - y[j] + 1, upd2[j]), j++;
chkmin(ans[q[i].id], query(tot2 - B[i] + 1) + q[i].a - q[i].b);
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = M, j = N; i >= 1; i--)
{
while (j >= 1 && x[j] >= A[i]) chenge(y[j], upd3[j]), j--;
chkmin(ans[q[i].id], query(B[i]) - q[i].a + q[i].b);
}
memset(fenwick, 0x3f, sizeof(fenwick));
for (int i = M, j = N; i >= 1; i--)
{
while (j >= 1 && x[j] >= A[i]) chenge(tot2 - y[j] + 1, upd4[j]), j--;
chkmin(ans[q[i].id], query(tot2 - B[i] + 1) - q[i].a - q[i].b);
}
for (int i = 1; i <= M; i++) printf("%lld\n", ans[i]);
return 0;
}

luogu4088 [USACO18FEB]Slingshot的更多相关文章

  1. 洛谷P4088 [USACO18FEB]Slingshot

    题面 大意:给出n个弹弓,可以用ti的时间把xi位置运到yi,在给出m组询问,求xj到yj最小时间. sol:首先如果不用弹弓,时间应为abs(xj-yj).否则时间就是abs(xi-xj)+abs( ...

  2. [USACO18FEB]Slingshot

    题意可化为: 在二维平面中有n个点,坐标为\((x_i,y_i)\),点权为\(t_i\). 现有m个询问,每次给定点\((x,y)\),求\(\min\{|x-x_i|+|y-y_i|+t_i,|y ...

  3. P4088 [USACO18FEB]Slingshot 线段树+扫描线

    \(\color{#0066ff}{ 题目描述 }\) Farmer John最讨厌的农活是运输牛粪.为了精简这个过程,他产生了一个新奇的想法:与其使用拖拉机拖着装满牛粪的大车从一个地点到另一个地点, ...

  4. LUOGU P4088 [USACO18FEB]Slingshot(线段树)

    传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...

  5. 洛谷 P4088 [USACO18FEB] Slingshot P(线段树+二维数点)

    题目链接 题意:有一个数轴,上面有 \(n\) 个传送门,使用第 \(i\) 个传送门,你可以从 \(x_i\) 走到 \(y_i\),花费的时间为 \(t_i\) 秒.你的速度为 \(1\) 格/秒 ...

  6. FOJ 1683 纪念SlingShot(矩阵快速幂)

    C - 纪念SlingShot Description 已知 F(n)=3 * F(n-1)+2 * F(n-2)+7 * F(n-3),n>=3,其中F(0)=1,F(1)=3,F(2)=5, ...

  7. 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G

    题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...

  8. FZU 1683 纪念SlingShot(矩阵水)

    纪念SlingShot [题目链接]纪念SlingShot [题目类型]矩阵水 &题解: 这代码调了十多分钟,结果是Mul没返回值,好zz啊. 令sum(n)=sum(n-1)+f(n) 那么 ...

  9. fuzhou 1683 纪念SlingShot ***

    Problem 1683 纪念SlingShot Accept: 361    Submit: 1287Time Limit: 1000 mSec    Memory Limit : 32768 KB ...

随机推荐

  1. Centos 7.2 安装稳定版 nginx

    1. 创建适用于RHEL/CentOS系统的安装源文件,位置为: /etc/yum.repos.d/nginx.repo , 并写入以下内容: [nginx] name=nginx repo base ...

  2. java 多线程系列基础篇(一)

    多线程状态图: Thread类的两个方法比较: yield方法: Yield是一个静态的原生(native)方法 Yield告诉当前正在执行的线程把运行机会交给线程池中拥有相同优先级的线程. Yiel ...

  3. javascript 中的JSON.stringify - 将对象和数组转换为json格式(来源于网络)

          JSON.stringify 函数 (JavaScript) 将 JavaScript 值转换为 JavaScript 对象表示法 (Json) 字符串.     JSON.stringi ...

  4. 3.《Spring学习笔记-MVC》系列文章,讲解返回json数据的文章共有3篇,分别为:

    转自:https://www.cnblogs.com/ssslinppp/p/4528892.html 概述 在文章:<[Spring学习笔记-MVC-3]SpringMVC返回Json数据-方 ...

  5. XMPP 客户端和服务端

    GPLv2授权不能商用 XMPP协议的客户端软件列表 http://zh.wikipedia.org/wiki/XMPP%E5%8D%94%E8%AD%B0%E7%9A%84%E5%AE%A2%E6% ...

  6. 《Android安全机制解析与应用实践》笔记 第2章

    Android扩展了Linux内核安全模型的用户与权限机制,将多用户操作系统的用户隔离机制巧妙地移植为应用程序隔离.在linux中,一个用户标识(UID)识别一个给定用户:在Android上,一个UI ...

  7. WKWebView的15条应用指南

    1.让一个web view充满屏幕 有时候你会看到有人向viewDidLoad()中添加代码,创建一个web view并让它充满整个可用区域.但这样效率很低,用起来很麻烦. 一个简单的方法是在你的视图 ...

  8. JAVA中的垃圾回收机制以及其在android开发中的作用

    http://blog.csdn.net/xieqibao/article/details/6707519 这篇文章概述了JAVA中运行时数据的结构,以及垃圾回收机制的作用.在后半部分,描述了如何检测 ...

  9. TortoiseSVN客户端安装遇到的问题汇总

    在windows server 2003版本上安装32位SVN客户,提示以下错误 1:无法通过windows installer服务安装此安装程序包” 这时需要安装更新的windows install ...

  10. 一堵墙IFC数据-wall.ifc

    这是一面墙的IFC数据内容 =====================================文档内容======================================= ISO-1 ...