HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.
题目大意:让求C(n,m)%(∏pi) 这个式子的值。


中国剩余定理:

解题思路:首先用lucas定理将求C(a,b)%p转化成求解∏C(bi,ai),这样,我们可以得到c[i]数组。然后用中国剩余定理来求x0的值,即为答案。在求解的过程中需要用到扩展欧几里得来求解Mi的逆元,由于Mi比较大,所以在乘积的时候会爆数据范围,所以改成快速乘取模的方式代替直接乘积。
#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int maxp=1e5+200;
INT p[15],c[15];
INT fac[maxp],inv[maxp];
INT powmod(INT a,INT n,INT mod){//快速幂取模
INT ret=1;
while(n){
if(n&1){
ret=ret*a%mod;
}
n>>=1;
a = a*a%mod;
}
return ret;
}
INT mulmod(INT a,INT b,INT mod){//快速乘取模
a = (a%mod + mod) % mod; //用扩展欧几里得求出的值可能为负值
b = (b%mod + mod) % mod; //用扩展欧几里得求出的值可能为负值
INT ret=0;
while(b){
if(b&1){
ret = (ret+a)%mod;
}
b >>= 1;
a = (a<<1) % mod;
}
return ret;
}
void init(INT n){ //递推出来阶乘和逆元数组
fac[0]=1;
for(int i=1;i<n;i++){
fac[i]=fac[i-1]*i % n;
}
inv[n-1]=powmod(fac[n-1],n-2,n);
for(int i=n-2;i>=0;i--){
inv[i] = inv[i+1] * (i+1) % n;
//fac[n]*inv[fac[n]]≡1%p ==> fac[n-1]*(n*inv[fac[n]])≡1%p
}
}
INT cm(INT n,INT m,INT mod){ //用逆元求组合数取模
if(n<0||m<0||m>n){
return 0;
}
return fac[n]*inv[n-m]%mod*inv[m]%mod;
}
INT lucas(INT n,INT m,INT mod){//lucas递归求P进制时的c
if(m==0){
return 1;
}
return lucas(n/mod,m/mod,mod) * cm(n%mod,m%mod,mod) % mod;
}
INT exgcd(INT a,INT b,INT &x,INT &y){ //求b关于模a的逆元。放在y中
if(b==0) { x = 1; y = 0; return a; }
INT d = exgcd(b, a%b , y, x);
y -= x * (a / b);
return d;
}
void CRT(INT k){//中国剩余定理求解一元线性同余方程组
INT M=1,x,y;
INT ans=0;
for(int i=1;i<=k;i++){
M *= p[i];
}
for(int i=1;i<=k;i++){
INT Mi=M/p[i];
exgcd(p[i],Mi,x,y);
ans = (ans+mulmod(mulmod(y,Mi,M),c[i],M))%M ;
}
printf("%I64d\n",ans);
}
int main(){
INT n,m,k;
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d%I64d",&n,&m,&k);
for(int i=1;i<=k;i++){
scanf("%I64d",&p[i]);
init(p[i]);
c[i] = lucas(n,m,p[i]);
}
CRT(k);
}
return 0;
}
HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】的更多相关文章
- HDU 5446 Unknown Treasure(Lucas定理+CRT)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...
- Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)
题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...
- HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘
HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k]) 0< n,m < 1018 思路:这题基本上算是模版题了 ...
- HDU 5446 Unknown Treasure Lucas+中国剩余定理
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next se ...
- hdu 5446 Unknown Treasure lucas和CRT
Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
- hdu 5446 Unknown Treasure Lucas定理+中国剩余定理
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- HDU 5446 Unknown Treasure
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
随机推荐
- DotNet经典面试题(转载)
.Net基础常见 什么叫应用程序域?什么是受管制的代码?什么是强类型系统?什么是装箱和拆箱?什么是重载?CTS.CLS.CLR分别作何解释? 答: 1应用程序域可以理解为一种轻量级进程.起到安全的作用 ...
- 【LeetCode每天一题】Remove Duplicates from Sorted List(移除有序链表中的重复数字)
Given a sorted linked list, delete all duplicates such that each element appear only once. Example 1 ...
- c语言参考书籍
很惭愧没能把c++学的很好,毕竟离开始工作只有2年时间,对自己要求不要过高,慢慢来吧.话说知道自己的不足,以后要更加抓紧了!fighting~ 现在计划着把c语言给学习一下了,当然这次指的是深入地学习 ...
- nagios安装使用指南
话不多说,下面开始,nagios具体的介绍,可以搜一下,这篇文章为作者在实际操作中整理出来,写出来的都是负责人的内容~ 环境准备 此文档共用2台服务器的配置,操作系统均为centOS6.7,安装用户都 ...
- DB2存储过程标准
CREATE OR REPLACE PROCEDURE "FCT"."PROC_FCT_DSB_SERIES"(IN ACCOUNTING_DATE DATE) ...
- 模板 Trie树
模板 Trie树 code: #include <iostream> #include <cstdio> using namespace std; const int wx=2 ...
- asp.net core 自定视图主题 实现IViewLocationExpander接口
新建ThemeViewLocationExpander.cs 实现IViewLocationExpander接口 /// <summary> /// 自定视图主题 实现IViewLocat ...
- [转载]C#实现获取浏览器信息
原文地址:C#实现获取浏览器信息作者:flywithme Request.Browser.MajorVersion.ToString();//获取客户端浏览器的(主)版本号 Request.Bro ...
- 利用zookeeper生成唯一id
package com.cxy.com.cxy.curator; import java.util.concurrent.ExecutorService; import java.util.concu ...
- Qt 学习之路 2(13):对话框简介
Qt 学习之路 2(13):对话框简介 豆子 2012年9月14日 Qt 学习之路 2 53条评论 对话框是 GUI 程序中不可或缺的组成部分.很多不能或者不适合放入主窗口的功能组件都必须放在 ...