Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.

 
Output
For each test case output the correct combination on a line.
 
Sample Input
1
9 5 2
3 5
 
Sample Output
6
 
Source
 

题目大意:让求C(n,m)%(∏pi) 这个式子的值。

中国剩余定理:

解题思路:首先用lucas定理将求C(a,b)%p转化成求解∏C(bi,ai),这样,我们可以得到c[i]数组。然后用中国剩余定理来求x0的值,即为答案。在求解的过程中需要用到扩展欧几里得来求解Mi的逆元,由于Mi比较大,所以在乘积的时候会爆数据范围,所以改成快速乘取模的方式代替直接乘积。

#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int maxp=1e5+200;
INT p[15],c[15];
INT fac[maxp],inv[maxp];
INT powmod(INT a,INT n,INT mod){//快速幂取模
INT ret=1;
while(n){
if(n&1){
ret=ret*a%mod;
}
n>>=1;
a = a*a%mod;
}
return ret;
}
INT mulmod(INT a,INT b,INT mod){//快速乘取模
a = (a%mod + mod) % mod; //用扩展欧几里得求出的值可能为负值
b = (b%mod + mod) % mod; //用扩展欧几里得求出的值可能为负值
INT ret=0;
while(b){
if(b&1){
ret = (ret+a)%mod;
}
b >>= 1;
a = (a<<1) % mod;
}
return ret;
}
void init(INT n){ //递推出来阶乘和逆元数组
fac[0]=1;
for(int i=1;i<n;i++){
fac[i]=fac[i-1]*i % n;
}
inv[n-1]=powmod(fac[n-1],n-2,n);
for(int i=n-2;i>=0;i--){
inv[i] = inv[i+1] * (i+1) % n;
//fac[n]*inv[fac[n]]≡1%p ==> fac[n-1]*(n*inv[fac[n]])≡1%p
}
}
INT cm(INT n,INT m,INT mod){ //用逆元求组合数取模
if(n<0||m<0||m>n){
return 0;
}
return fac[n]*inv[n-m]%mod*inv[m]%mod;
}
INT lucas(INT n,INT m,INT mod){//lucas递归求P进制时的c
if(m==0){
return 1;
}
return lucas(n/mod,m/mod,mod) * cm(n%mod,m%mod,mod) % mod;
}
INT exgcd(INT a,INT b,INT &x,INT &y){ //求b关于模a的逆元。放在y中
if(b==0) { x = 1; y = 0; return a; }
INT d = exgcd(b, a%b , y, x);
y -= x * (a / b);
return d;
}
void CRT(INT k){//中国剩余定理求解一元线性同余方程组
INT M=1,x,y;
INT ans=0;
for(int i=1;i<=k;i++){
M *= p[i];
}
for(int i=1;i<=k;i++){
INT Mi=M/p[i];
exgcd(p[i],Mi,x,y);
ans = (ans+mulmod(mulmod(y,Mi,M),c[i],M))%M ;
}
printf("%I64d\n",ans);
}
int main(){
INT n,m,k;
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d%I64d",&n,&m,&k);
for(int i=1;i<=k;i++){
scanf("%I64d",&p[i]);
init(p[i]);
c[i] = lucas(n,m,p[i]);
}
CRT(k);
}
return 0;
}

  

HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】的更多相关文章

  1. HDU 5446 Unknown Treasure(Lucas定理+CRT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...

  2. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  3. HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘

    HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了 ...

  4. HDU 5446 Unknown Treasure Lucas+中国剩余定理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next se ...

  5. hdu 5446 Unknown Treasure lucas和CRT

    Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  7. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  8. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

  9. HDU 5446 Unknown Treasure

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

随机推荐

  1. java java 内部类

    java 内部类 一.java内部类: java内部类分为: 成员内部类.静态嵌套类.方法内部类.匿名内部类 . 内部类的共性: (1).内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.c ...

  2. Glib之GObject简介(翻译)

    GObject GObject库是Glib库的动态类型系统实现,它实现了: 基于引用计数的内存管理 实例的构造和析构 通用的set/get的属性获取方法 简单易用的信号机制 对象实例化 所述g_obj ...

  3. beijing(数学题)

    beijing(数学题) 甲和乙随机进行2n+1场n胜球赛,赌球必须对每场球赛单独押注.由于小明是甲队的铁杆球迷,现在小明希望如果甲最终获胜,那么他获得\(2^{2n-1}\)元,否则乙队获胜,他失去 ...

  4. 主要介绍JavaEE中Maven Web 项目的结构及其它几个小问题

    先说下本篇随笔的目录. 1.介绍windows中环境变量Path与ClassPath的区别. 2.可能导致命令行运行javac编译成功,但 java命令 + 所要执行的类的类名 无效的原因. 3.介绍 ...

  5. Build SSH for Development on Windows Subsystem for Linux

    It seems that Windows Subsystem for Linux (WSL) is getting much more mature than the time when it fi ...

  6. luogu2480 [SDOI2010]古代猪文

    link 题意一开始没TM读懂... 就是给定一个\(G\le10^{10},N\le10^9\),求\(G^{\sum_{d|n}{n\choose d}}\),对999911659取模 由于999 ...

  7. Gym - 101845F 最大流

    The UN finals are here!, the coaches/ex-coaches team is creating a new exciting contest to select wh ...

  8. PAT天梯赛L1-020 帅到没朋友

    题目链接:点击打开链接 当芸芸众生忙着在朋友圈中发照片的时候,总有一些人因为太帅而没有朋友.本题就要求你找出那些帅到没有朋友的人. 输入格式: 输入第一行给出一个正整数N(<=100),是已知朋 ...

  9. java程序设计实验

    建立文件调试jdk idea断点调试 项目素数的寻遍

  10. vue.js组件之j间的通讯四,通过单一事件来管理组件通讯

    总结; 首先需要创建是一个空实例: var vm = new Vue(); vm.$emit(事件,数据); vm.$on(事件,function(data){ }bind(this))