nyoj 题目737 合并石子(一)
石子合并(一)
- 描述
- 有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
- 输入
- 有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开 - 输出
- 输出总代价的最小值,占单独的一行
- 样例输入
-
3
1 2 3
7
13 7 8 16 21 4 18 - 样例输出
-
9
239 据说这是一个区间dp问题
代码如下#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define INF 999999999
int dp[][];
int stone[];
int sum[]; using namespace std; int main(int argc, char const *argv[])
{
int n;
while(scanf("%d",&n) != EOF) {
memset(dp, , sizeof(dp));
memset(sum, , sizeof(sum));
for(int i = ; i <= n; i++) {
scanf("%d",&stone[i]);
sum[i] = sum[i-]+stone[i];
}
for(int len = ; len <= n; len++) {
for(int i = ; i+len-<= n; i++) {
int j = i+len-;
dp[i][j] = INF;
for(int k = i; k < i+len-;k++) {
dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+][j]+sum[j]-sum[i-]);
}
}
}
printf("%d\n", dp[][n]);
}
return ;
}dp[i][j]表示在区间i到j内合并所需要的最小代价
nyoj 题目737 合并石子(一)的更多相关文章
- NYOJ题目839合并
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAKgCAIAAADmrHcoAAAgAElEQVR4nO3dO1LsOheG4X8S5AyE2A
- dp优化-四边形不等式(模板题:合并石子)
学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp( ...
- 合并石子(dp)
合并石子 时间限制: 1 Sec 内存限制: 128 MB提交: 7 解决: 7[提交][状态][讨论版][命题人:quanxing] 题目描述 在一个操场上一排地摆放着N堆石子.现要将石子有次序 ...
- UESTC 886 方老师金币堆 --合并石子DP
环状合并石子问题. 环状无非是第n个要和第1个相邻.可以复制该行石子到原来那行的右边即可达到目的. 定义:dp[i][j]代表从第i堆合并至第j堆所要消耗的最小体力. 转移方程:dp[i][j]=mi ...
- CodeForces-884D:Boxes And Balls(合并石子)
Ivan has n different boxes. The first of them contains some balls of n different colors. Ivan wants ...
- Java实现 蓝桥杯 算法提高 合并石子
算法提高 合并石子 时间限制:2.0s 内存限制:256.0MB 问题描述 在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数 ...
- NYOJ 737:石子合并(一)(区间dp)
737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No 通过数:30 提交数:37 难度:3 题目描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆. ...
- NYOJ 737 (石子合并)
该题是一道DP题,核心思想如下: 某个区间一定是这个区间内的某两个子区间合成的(这两个子区间互补,即这两个区间加起来等于大区间), 所以我们枚举所有的情况,取个最大值即可.因为最初是从2堆石子开始无法 ...
- nyist 737 相邻石子合并问题
http://acm.nyist.net/JudgeOnline/problem.php?pid=737 动态规划状态方程: dp[i][j]=d[i][k]+dp[k+1][j]+(sum[k]-s ...
随机推荐
- mysql 自增主键为什么不是连续的?
由于自增主键可以让主键索引尽量地保持递增顺序插入,避免了页分裂,因此索引更紧凑 MyISAM 引擎的自增值保存在数据文件中 nnoDB 引擎的自增值,其实是保存在了内存里,并且到了 MySQL 8.0 ...
- spring-JDBC Template
JDBC Template概念 为简化持久化操作,spring在JDBC API之上提供JDBC Template组件 提供统一模板: 环境配置 1.创建MySQL数据库 2.搭建maven项目,并引 ...
- 转 Ubuntu 下 vim 搭建python 环境 配置
1. 安装完整的vim# apt-get install vim-gnome 2. 安装ctags,ctags用于支持taglist,必需!# apt-get install ctags 3. 安装t ...
- 【转载】C#批量插入数据到Sqlserver中的三种方式
引用:https://m.jb51.net/show/99543 这篇文章主要为大家详细介绍了C#批量插入数据到Sqlserver中的三种方式,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 本篇, ...
- 从0开始学习 Git
1. 什么是Git? Git 是 Linux 发明者 Linus 开发的一款新时代的版本控制系统,那什么是版本控制系统呢?怎么理解?网上一大堆详细的介绍,但是大多枯燥乏味,对于新手也很难理解,这里我只 ...
- hadoop的shuffle过程
1. shuffle: 洗牌.发牌——(核心机制:数据分区,排序,缓存): shuffle具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key ...
- Django项目发布到Apache2.4配置mod_wsgi,解决遭遇的各种坑。
环境: Apache2.4 32bit Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:05:16) [MSC v.1915 32 bit (Inte ...
- Altium Designer使用5:AD18的DXP在什么地方?
1.在顶上的菜单栏右击
- opencv中对图像的像素操作
1.对灰度图像的像素操作: #include<iostream> #include<opencv2/opencv.hpp> using namespace std; using ...
- poj1182食物链
Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到 ...