【Luogu】P3239亚瑟王(概率DP)
请看luogu第一篇题解
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<cstdlib>
#include<cmath>
#define maxn 300
using namespace std; double f[maxn][maxn];
double g[maxn];
double p[maxn];
double s[maxn]; int main(){
int T; scanf("%d",&T);
while(T--){
memset(f,,sizeof(f));
memset(g,,sizeof(g));
int n,m; scanf("%d%d",&n,&m);
for(int i=;i<=n;++i) scanf("%lf%lf",&p[i],&s[i]);
g[]=-pow(-p[],m);
f[][]=-g[]; f[][]=g[];
for(int i=;i<=n;++i)
for(int j=;j<=min(i,m);++j){
if(j) f[i][j]+=f[i-][j-]*(-pow(-p[i],m-j+));
if(i^j) f[i][j]+=f[i-][j]*pow(-p[i],m-j);
}
for(int i=;i<=n;++i)
for(int j=;j<=min(i-,m);++j) g[i]+=f[i-][j]*(-pow(-p[i],m-j));
double ans=;
for(int i=;i<=n;++i) ans+=g[i]*s[i];
printf("%.10lf\n",ans);
}
return ;
}
【Luogu】P3239亚瑟王(概率DP)的更多相关文章
- P3239 [HNOI2015]亚瑟王——概率DP
题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...
- 【bzoj4008】[HNOI2015]亚瑟王 概率dp
题目描述 $n$ 张牌,$r$ 轮游戏,每轮从左向右操作,遇到第 $i$ 张牌有 $p_i$ 的概率选中,选中会产生 $d_i$ 的贡献,丢弃掉该牌并结束这一轮,否则继续下一张.问最终的期望贡献. 输 ...
- 【BZOJ4008】【HNOI2015】亚瑟王 概率DP
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- BZOJ 4008 亚瑟王(概率DP 奥妙重重)
题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]
亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
随机推荐
- 搭建大众点评CAT监控平台
CAT(Central Application Tracking)是基于Java开发的实时应用监控平台,包括实时应用监控,业务监控.关于CAT的具体介绍可移步到CAT官网进行查阅. 1. 环境清单 C ...
- 第一次发干货Observable.zip与Observable.forkJoin
在IT界已经混了5年了,5年中浏览了不少的网站,在上面查询自己想要的东西,解决工作中遇到的问题,心里总想有天自己能够有自己的博客,能给分享一些自己在生活中.工作中遇到的问题,让其他有类似经历的朋友能够 ...
- JavaScript的算术、赋值、关系运算符的讲解
JS中的运算符分为:算术/赋值/关系/逻辑/字符串 算术运算符: +加法 -减法 *乘法 /除法 %取余 var a = 1, b = 2; a + b = 3 ...
- layer 的功能
1.layer.alert() layer.alert('',{ title: "<div style='color:red;margin-left:20px;font-size:20 ...
- .Net Core爬虫爬取妹子网图片
现在网上大把的Python的爬虫教程,很少看见有用C#写的,正好新出的.Net Core可以很方便的部署到Linux上,就用妹子图做示范写个小爬虫 在C#下有个很方便的类库 HtmlAgilityPa ...
- Java数据处理
对于形如“(TYPE=SITA##)&&(((CTYP=FPL##)||(CTYP=CHG##)||(CTYP=CNL##)||(CTYP=DLA##)||(CTYP=DL##)||( ...
- php中const与static的区别与使用(转)
首先关于const 在php的类内部只可以修饰成员属性,不可以修饰方法,如下: class Test{ const PATH = 'c/';//修饰常量 const function te ...
- Python学习第一弹
开发语言: 高级:Python.java.PHP C# GO ruby C++ ——>字节码 低级:C.汇编 ...
- B1091 N-自守数 (15分)
B1091 N-自守数 (15分) 如果某个数 \(K\)的平方乘以\(N\) 以后,结果的末尾几位数等于 \(K\),那么就称这个数为"\(N\)-自守数".例如 \(3×92 ...
- Git ---游离状态下的commit 分支切换与找回,commit之后无法找到历史记录
commit之后无法找到历史记录 https://blog.csdn.net/zyb2017/article/details/78307688