在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能。本文通过一个简单的例子详解这两个函数的作用。虽然QuerySet的文档中已经详细说明了,但本文试图从QuerySet触发的SQL语句来分析工作方式,从而进一步了解Django具体的运作方式。

本来打算写成一篇单独的文章的,但是写完select_related()之后发现长度已经有点长了,所以还是写成系列,大概在两到三篇。整个完成之后将会在这里添加上其他文章的链接。

1. 实例的背景说明

假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

Models.py 内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from django.db import models
 
class Province(models.Model):
    name = models.CharField(max_length=10)
    def __unicode__(self):
        return self.name
 
class City(models.Model):
    name = models.CharField(max_length=5)
    province = models.ForeignKey(Province)
    def __unicode__(self):
        return self.name
 
class Person(models.Model):
    firstname  = models.CharField(max_length=10)
    lastname   = models.CharField(max_length=10)
    visitation = models.ManyToManyField(City, related_name = "visitor")
    hometown   = models.ForeignKey(City, related_name = "birth")
    living     = models.ForeignKey(City, related_name = "citizen")
    def __unicode__(self):
        return self.firstname + self.lastname

注1:创建的app名为“QSOptimize”

注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市

2. select_related()

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化

作用和方法

在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:

1
2
3
4
>>> citys = City.objects.all()
>>> for c in citys:
...   print c.province
...

这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;

注:这里的SQL语句是直接从Django的logger:‘django.db.backends’输出出来的

如果我们使用select_related()函数:

1
2
3
4
>>> citys = City.objects.select_related().all()
>>> for c in citys:
...   print c.province
...

就只有一次SQL查询,显然大大减少了SQL查询的次数:

1
2
3
4
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ;

这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:

1
2
3
4
5
6
7
8
+----+-----------+-------------+----+-----------+
| id | name      | province_id | id | name      |
+----+-----------+-------------+----+-----------+
|  1 | 武汉市    |           1 |  1 | 湖北省    |
|  2 | 广州市    |           2 |  2 | 广东省    |
|  3 | 十堰市    |           1 |  1 | 湖北省    |
+----+-----------+-------------+----+-----------+
3 rows in set (0.00 sec)

使用方法

函数支持如下三种用法:
*fields 参数

select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。

例如我们要获得张三的现居省份,可以用如下方式:

1
2
>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province

触发的SQL查询如下:

1
2
3
4
5
6
7
8
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = '三'  AND `QSOptimize_person`.`firstname` = '张' );

可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。

1
2
3
4
5
6
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| id | firstname | lastname | hometown_id | living_id | id | name      | province_id | id | name      |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
|  1 | 张        | 三       |           3 |         1 |  1 | 武汉市    |   1         |  1 | 湖北省    |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
1 row in set (0.00 sec)

然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:

1
>>> zhangs.hometown.province
1
2
3
4
5
6
7
8
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`id` = 3 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1

同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。

值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:

1
2
3
>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province

但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:

1
2
3
>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province

如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。

depth 参数

select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:

1
>>> zhangs = Person.objects.select_related(depth = d)

d=1  相当于 select_related(‘hometown’,'living’)

d=2  相当于 select_related(‘hometown__province’,'living__province’)

无参数

select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:

  1. Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
  2. Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。

小结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  4. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  5. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  6. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

实例详解Django的 select_related的更多相关文章

  1. 这个贴子的内容值得好好学习--实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化

    感觉要DJANGO用得好,ORM必须要学好,不管理是内置的,还是第三方的ORM. 最最后还是要到SQL.....:( 这一关,慢慢练啦.. 实例详解Django的 select_related 和 p ...

  2. 转载 :实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)

    在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用.虽然Q ...

  3. 转 实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)

    这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践. 第一篇在这里 讲例子和select_related() 第二篇在这里 讲prefe ...

  4. 详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化

    在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用. 1. ...

  5. linux基础-磁盘阵列(RAID)实例详解

    磁盘阵列(RAID)实例详解 raid技术分类 软raid技术 硬raid技术 Raid和lvm的区别 为什么选择用raid RAID详解 RAID-0 RAID-1 RAID-5 Raid-10 R ...

  6. Cocos2d-x 3.X手游开发实例详解

    Cocos2d-x 3.X手游开发实例详解(最新最简Cocos2d-x手机游戏开发学习方法,以热门游戏2048.卡牌为例,完整再现手游的开发过程,实例丰富,代码完备,Cocos2d-x作者之一林顺和泰 ...

  7. JavaScript学习笔记-实例详解-类(二)

    实例详解-类(二)   //===给Object.prototype添加只读\不可枚举\不可配置的属性objectId(function(){ Object.defineProperty(Object ...

  8. JavaScript学习笔记-实例详解-类(一)

    实例详解-类(一): //每个javascript函数(除了bind())都自动拥有一个prototype对象// 在未添加属性或重写prototype对象之前,它只包含唯一一个不可枚举属性const ...

  9. Entity Framework实例详解

    Entity Framework Code First的默认行为是使用一系列约定将POCO类映射到表.然而,有时候,不能也不想遵循这些约定,那就需要重写它们.重写默认约定有两种方式:Data Anno ...

随机推荐

  1. 剧本--ansible

    剧本不喜欢, 1.1 编写剧本规范:(PYyaml语法格式文件) 剧本中有层级划分 每个层级都要用两个空格进行区分 第一级标题 第二级标题 第三级标题 强调注意:一定使用ansible软件配置剧本时, ...

  2. 阿里插件检查 lombok报错---方法缺少 '@Override' 注解

    问题: Eclipse里,阿里编码规约插件扫描代码出现,但是idea却没有. 解决: 将以上注解改成 @Setter @Getter @NoArgsConstructor @AllArgsConstr ...

  3. Nuxt 2.3.X 配置sass

    1.需要安装node-sass和sass-loader就行了 npm i -S node-sass sass-loader

  4. Python数据操作

    列表操作 保存matrix或者保存ndarray 数据类型转换 读取CSV某列 numpy数组写入到csv pandas to_csv 最左边 多一列 的问题 DataFrame对象操作

  5. CentOS 7安装Perl环境

    平台信息 Description: CentOS Linux release 7.6.1810 (Core) 安装步骤 安装支持 $ yum install perl* #安装perl相关支持 $ y ...

  6. 电感的Q值

    电感的Q值又称为品质因数,即在通过一定频率信号时,感抗与等效损耗之比.品质因数越高即系统损耗越小效率越高,一般为50`100,最高500左右,再大就会烧毁.一般Q值与很多因素有关:绕线粗细,长度与直径 ...

  7. UGUI 切割图片

    1.图片设置为以下格式,然后点击Sprite Editor. 2.点击Slice. 3.再点击Slice. 4.效果图.

  8. c#-day03学习笔记

    循环语句 一共有三种 1: For循环 2: while 循环 3: do while 循环 //1             //2             //4 For循环  语法       f ...

  9. Linux下svn环境搭建

    不久前买了一个阿里云服务器,想着在上面搭建一个svn服务方便自己的代码管理.顺便记录下自己的搭建过程 首先,安装服务 通过yum -stall subversion 安装snv,可能install之前 ...

  10. ora-12541:tns: 无监听程序解决办法

    1.首先找到 Oracle 安装文件 中 listener.ora文件与tnsnames.ora文件: 列如:路径:E:\app\当前系统的账户名\product\11.2.0\dbhome_1\NE ...