实例详解Django的 select_related
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能。本文通过一个简单的例子详解这两个函数的作用。虽然QuerySet的文档中已经详细说明了,但本文试图从QuerySet触发的SQL语句来分析工作方式,从而进一步了解Django具体的运作方式。
本来打算写成一篇单独的文章的,但是写完select_related()之后发现长度已经有点长了,所以还是写成系列,大概在两到三篇。整个完成之后将会在这里添加上其他文章的链接。
1. 实例的背景说明
假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:
Models.py 内容如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from django.db import models class Province(models.Model): name = models.CharField(max_length = 10 ) def __unicode__( self ): return self .name class City(models.Model): name = models.CharField(max_length = 5 ) province = models.ForeignKey(Province) def __unicode__( self ): return self .name class Person(models.Model): firstname = models.CharField(max_length = 10 ) lastname = models.CharField(max_length = 10 ) visitation = models.ManyToManyField(City, related_name = "visitor" ) hometown = models.ForeignKey(City, related_name = "birth" ) living = models.ForeignKey(City, related_name = "citizen" ) def __unicode__( self ): return self .firstname + self .lastname |
注1:创建的app名为“QSOptimize”
注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
2. select_related()
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化
作用和方法
在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:
1
2
3
4
|
>>> citys = City.objects. all () >>> for c in citys: ... print c.province ... |
这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.` name `, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` = 1 ; SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` = 2 ; SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` = 1 ; |
注:这里的SQL语句是直接从Django的logger:‘django.db.backends’输出出来的
如果我们使用select_related()函数:
1
2
3
4
|
>>> citys = City.objects.select_related(). all () >>> for c in citys: ... print c.province ... |
就只有一次SQL查询,显然大大减少了SQL查询的次数:
1
2
3
4
|
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.` name `, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_city` INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ; |
这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:
1
2
3
4
5
6
7
8
|
+----+-----------+-------------+----+-----------+ | id | name | province_id | id | name | +----+-----------+-------------+----+-----------+ | 1 | 武汉市 | 1 | 1 | 湖北省 | | 2 | 广州市 | 2 | 2 | 广东省 | | 3 | 十堰市 | 1 | 1 | 湖北省 | +----+-----------+-------------+----+-----------+ 3 rows in set (0.00 sec) |
使用方法
*fields 参数
select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。
例如我们要获得张三的现居省份,可以用如下方式:
1
2
|
>>> zhangs = Person.objects.select_related( 'living__province' ).get(firstname = u "张" ,lastname = u "三" ) >>> zhangs.living.province |
触发的SQL查询如下:
1
2
3
4
5
6
7
8
|
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.` name `, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' ); |
可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。
1
2
3
4
5
6
|
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+ | id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name | +----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+ | 1 | 张 | 三 | 3 | 1 | 1 | 武汉市 | 1 | 1 | 湖北省 | +----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+ 1 row in set (0.00 sec) |
然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:
1
|
>>> zhangs.hometown.province |
1
2
3
4
5
6
7
8
|
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.` name `, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`id` = 3 ; SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` = 1 |
同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。
值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:
1
2
3
|
>>> zhangs = Person.objects.select_related( 'hometown__province' , 'living__province' ).get(firstname = u "张" ,lastname = u "三" ) >>> zhangs.hometown.province >>> zhangs.living.province |
但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:
1
2
3
|
>>> zhangs = Person.objects.select_related( 'hometown__province' ).select_related( 'living__province' ).get(firstname = u "张" ,lastname = u "三" ) >>> zhangs.hometown.province >>> zhangs.living.province |
如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。
depth 参数
select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:
1
|
>>> zhangs = Person.objects.select_related(depth = d) |
d=1 相当于 select_related(‘hometown’,'living’)
d=2 相当于 select_related(‘hometown__province’,'living__province’)
无参数
select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:
- Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
- Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。
小结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
实例详解Django的 select_related的更多相关文章
- 这个贴子的内容值得好好学习--实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化
感觉要DJANGO用得好,ORM必须要学好,不管理是内置的,还是第三方的ORM. 最最后还是要到SQL.....:( 这一关,慢慢练啦.. 实例详解Django的 select_related 和 p ...
- 转载 :实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用.虽然Q ...
- 转 实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)
这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践. 第一篇在这里 讲例子和select_related() 第二篇在这里 讲prefe ...
- 详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用. 1. ...
- linux基础-磁盘阵列(RAID)实例详解
磁盘阵列(RAID)实例详解 raid技术分类 软raid技术 硬raid技术 Raid和lvm的区别 为什么选择用raid RAID详解 RAID-0 RAID-1 RAID-5 Raid-10 R ...
- Cocos2d-x 3.X手游开发实例详解
Cocos2d-x 3.X手游开发实例详解(最新最简Cocos2d-x手机游戏开发学习方法,以热门游戏2048.卡牌为例,完整再现手游的开发过程,实例丰富,代码完备,Cocos2d-x作者之一林顺和泰 ...
- JavaScript学习笔记-实例详解-类(二)
实例详解-类(二) //===给Object.prototype添加只读\不可枚举\不可配置的属性objectId(function(){ Object.defineProperty(Object ...
- JavaScript学习笔记-实例详解-类(一)
实例详解-类(一): //每个javascript函数(除了bind())都自动拥有一个prototype对象// 在未添加属性或重写prototype对象之前,它只包含唯一一个不可枚举属性const ...
- Entity Framework实例详解
Entity Framework Code First的默认行为是使用一系列约定将POCO类映射到表.然而,有时候,不能也不想遵循这些约定,那就需要重写它们.重写默认约定有两种方式:Data Anno ...
随机推荐
- source vs export AND ctrl d vs ctrl z
在脚本中export,只在当前shell脚本进程和子进程中有效 source的作用中是将export的变量在当前脚本环境生效, 如果是在父脚本中执行source,在子脚本中执行export, 父脚本退 ...
- 转 Alert.log shows No Standby Redo Logfiles Of Size 153600 Blocks Available
http://blog.itpub.net/23135684/viewspace-703620/ Alert.log shows No Standby Redo Logfiles Of Size 15 ...
- TCP和UDP的区别以及各自应用
TCP(Transmission Control Protocol,传输控制协议)和UDP(User Datagram Protocol,用户数据报协议)是运输层的两个主要协议,均是互联网的正式标准. ...
- java编程--04比较几个常用的日期时间相关类的区别
第一篇,介绍日期的比较 第二篇,介绍日期的格式化 第三篇,介绍关于日期常用的计算 第四篇,比较几个常用的日期时间相关类的区别 第五篇,jdk9对日期类进行了更新,写一些i自己的学习心得. 下面以一组思 ...
- 深入学习webpack(二)
深入学习webpack(二) 在深入学习webpack(一)中,我通过一个例子介绍了webpack的基本使用方法,下面将更为系统的学习webpack的基本概念,对于一门技术的掌握我认为系统化还是很重要 ...
- 打开fiddler 电脑无法上网问题
Fiddler下Firefox提示“您的连接并不安全”的解决办法 一.版本信息 Firefox 最新版本V46.0.1 Fiddler 最新版本V4.6.2.3 二.错误信息 开启fiddlers的h ...
- SuperSpider(简书爬虫JAVA版)
* 建站数据SuperSpider(简书)* 本项目目的:* 为练习web开发提供相关的数据:* 主要数据包括:* 简书热门专题模块信息.对应模块下的热门文章.* 文章的详细信息.作者信息.* 评论区 ...
- oracle 找回被覆盖的存储过程
登录到sys账户下 1.TO_TIMESTAMP('2014-05-04 14:33:00', 'YYYY-MM-DD HH24:MI:SS') 删除前的日期 2.owner 表空调 3.Name ...
- ORACLE 查看表空间
select tablespace_name, file_id, file_name,round(bytes/(1024*1024),0) total_spacefrom dba_data_files ...
- Javascript学习一Object
构造函数 new Object() new Object(value) 参数 value 可选的参数,声明了要转换成Number对象.Boolean对象或String对象的原始值(即数字.布尔 ...