Hubtown

时间限制: 1 Sec  内存限制: 128 MB
提交: 23  解决: 11
[提交] [状态] [讨论版] [命题人:admin]

题目描述

Hubtown is a large Nordic city which is home to n citizens. Every morning, each of its citizens wants to travel to the central hub from which the city gets its name, by using one of the m commuter trains which pass through the city. Each train line is a ray (i.e., a line segment which extends infinitely long in one direction), ending at the central hub, which is located at coordinates (0, 0). However, the train lines have limited capacity (which may vary between train lines), so some train lines may become full, leading to citizens taking their cars instead of commuting. The city council wishes to minimize the number of people who go by car. In order to do this, they will issue instructions stating which citizens are allowed to take which train. 
A citizen will always take the train line which is of least angular distance from its house. However, if a citizen is exactly in the middle between two train lines, they are willing to take either of them, and city council can decide which of the two train lines the citizen should use. 
See Figure H.1 for an example.

Figure H.1: Illustration of Sample Input 1. The dashed arrows indicate which train lines the citizens are closest to (note that we are measuring angular distances, not Euclidean distance).
Your task is to help the council, by finding a maximum size subset of citizens who can go by train in the morning to the central hub, ensuring that each of the citizens take one of the lines they are closest to, while not exceeding the capacity of any train line. For this subset, you should also print what train they are to take.

输入

The first line of input contains two integers n and m, where 0 ≤ n ≤ 200 000 is the number of citizens, and 1 ≤ m ≤ 200 000 is the number of train lines.
The next n lines each contain two integers x and y, the Cartesian coordinates of a citizen’s home. No citizen lives at the central hub of the city.
Then follow m lines, each containing three integers x, y, and c describing a train line, where (x, y) are the coordinates of a single point (distinct from the central hub of the city) which the train line passes through and 0 ≤ c ≤ n is the capacity of the train line. The train line is the ray starting at (0, 0) and passing through (x, y).
All coordinates x and y (both citizens’ homes and the points defining the train lines) are bounded by 1000 in absolute value. No two train lines overlap, but multiple citizens may live at the same coordinates.

输出

First, output a single integer s – the maximum number of citizens who can go by train. Then,output s lines, one for each citizen that goes by train. On each line, output the index of the citizen followed by the index of the train line the citizen takes. The indices should be zero-indexed (i.e.,between 0 and n − 1 for citizens, and between 0 and m − 1 for train lines, respectively), using the same order as they were given in the input.

样例输入

3 2
2 0
-1 0
-2 -1
1 -1 1
1 1 2

样例输出

3
0 1
1 1
2 0

思路:极角排序,建边求最大流!

AC代码;

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld epsss=1e-;
const int N=4e5+,M=2e6+,inf=0x3f3f3f3f;
int n,m;
int ST,ED,ID;
int first[N],w[M],cap[M],nxt[M];
void ins(int x,int y,int cap_)
{
w[++ID]=y;
cap[ID]=cap_;
nxt[ID]=first[x];
first[x]=ID;
w[++ID]=x;
cap[ID]=;
nxt[ID]=first[y];
first[y]=ID;
}
int d[N];
bool bfs()
{
memset(d,-,sizeof(d));
d[ST]=;
queue<int>q;
q.push(ST);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int z=first[x];z;z=nxt[z])
if(cap[z])
{
int y=w[z];
if(d[y]==-)
{
d[y]=d[x]+;
if(y==ED) return ;
q.push(y);
}
}
}
return ;
}
int dfs(int x,int all)
{
if(x==ED) return all;
int use=;
for(int z=first[x];z;z=nxt[z])
if(cap[z])
{
int y=w[z];
if(d[y]==d[x]+)
{
int tmp=dfs(y,min(cap[z],all-use));
cap[z]-=tmp;
cap[z^]+=tmp;
use+=tmp;
if(use==all) break;
}
}
if(use==) d[x]=-;
return use;
}
int dinic()
{
int tmp=;
while(bfs())
tmp+=dfs(ST,inf);
return tmp;
}
struct A
{
int x,y,o;
} a[N];
struct B
{
int x,y,o,c;
} b[N];
struct E
{
int x,y,t;
int sgn;
E() {}
E(int _x,int _y,int _t)
{
x=_x,y=_y,t=_t;
if(!x) sgn=y>;
else sgn=x>;
}
} e[];
bool cmpe(const E&a,const E&b)
{
if(a.sgn!=b.sgn) return a.sgn<b.sgn;
int t=a.x*b.y-a.y*b.x;
if(t) return t<;
return a.t<b.t;
}
int pre[],suf[];
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
bool point_on_line(const A&a,const B&b)
{
int d1=gcd(abs(a.x),abs(a.y)),d2=gcd(abs(b.x),abs(b.y));
return (a.x/d1==b.x/d2)&&(a.y/d1==b.y/d2);
}
struct Point
{
ll x,y;
Point() {}
Point(ll _x,ll _y)
{
x=_x,y=_y;
}
};
ll cross(const Point &a,const Point &b)
{
return a.x*b.y-a.y*b.x;
}
ll sig(ll x)
{
if(x==) return ;
return x>?:-;
}
struct Pointd
{
ld x,y;
Pointd() {}
Pointd(ld _x,ld _y)
{
x=_x,y=_y;
}
};
ld crossd(const Pointd&a,const Pointd&b)
{
return a.x*b.y-a.y*b.x;
}
ll sigd(ld x)
{
if(fabs(x)<epsss) return ;
return x>?:-;
}
int distance_cmp(const A&_a,const B&_b,const B&_c)
{
Point a(_a.x,_a.y);
Point b(_b.x,_b.y);
Point c(_c.x,_c.y);
Point d;
if(!cross(b,c))
{
d=Point(-b.y,b.x);
if(!cross(a,d))
return ;
if(sig(cross(d,a))==sig(cross(d,b)))
return -;
return ;
}
ld L=sqrt(b.x*b.x+b.y*b.y);
ld R=sqrt(c.x*c.x+c.y*c.y);
Pointd aa(a.x,a.y);
Pointd bb(b.x,b.y);
Pointd cc(c.x,c.y);
bb.x*=R;
bb.y*=R;
cc.x*=L;
cc.y*=L;
Pointd dd=Pointd(bb.x+cc.x,bb.y+cc.y);
if(!sigd(crossd(aa,dd)))
return ;
if(sigd(crossd(dd,aa))==sigd(crossd(dd,bb)))
return -;
return ;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
ST=;
ED=n+m+;
ID=;
memset(first,,sizeof(first));
for(int i=;i<=n;++i)
{
scanf("%d %d",&a[i].x,&a[i].y);
a[i].o=i;
}
for(int i=;i<=m;++i)
{
scanf("%d %d %d",&b[i].x,&b[i].y,&b[i].c);
b[i].o=i;
}
int ce=;
for(int i=; i<=n; i++)
{
e[++ce]=E(a[i].x,a[i].y,i);
}
for(int i=; i<=m; i++)
{
e[++ce]=E(b[i].x,b[i].y,-i);
}
sort(e+,e+ce+,cmpe);
pre[]=;
for(int i=; i<=ce; i++)
if(e[i].t<)
pre[]=-e[i].t;
for(int i=; i<=ce; i++)
{
pre[i]=pre[i-];
if(e[i].t<)
pre[i]=-e[i].t;
}
suf[ce+]=;
for(int i=ce; i; i--)
if(e[i].t<)
suf[ce+]=-e[i].t;
for(int i=ce; i; i--)
{
suf[i]=suf[i+];
if(e[i].t<)
suf[i]=-e[i].t;
}
for(int i=; i<=ce; i++)
if(e[i].t>)
{
int x=e[i].t;
int L=pre[i],R=suf[i];
if(L==R)
{
ins(x,L+n,);
continue;
}
if(point_on_line(a[x],b[L]))
{
ins(x,L+n,);
continue;
}
if(point_on_line(a[x],b[R]))
{
ins(x,R+n,);
continue;
}
int t=distance_cmp(a[x],b[L],b[R]);
if(t<=)
ins(x,L+n,);
if(t>=)
ins(x,R+n,);
}
for(int i=;i<=n;++i)
{
ins(ST,i,);
}
for(int i=;i<=m;++i)
{
ins(n+i,ED,b[i].c);
}
printf("%d\n",dinic());
for(int i=;i<=n;++i)
{
for(int z=first[i];z;z=nxt[z])
{
int y=w[z];
if(y>n && cap[z]==)
{
printf("%d %d\n",i-,y-n-);
}
}
}
}
return ;
}

Hubtown(最大流)的更多相关文章

  1. Hubtown

    Hubtown 时间限制: 10 Sec  内存限制: 256 MB 题目描述 Hubtown is a large Nordic city which is home to n citizens. ...

  2. 使用C#处理基于比特流的数据

    使用C#处理基于比特流的数据 0x00 起因 最近需要处理一些基于比特流的数据,计算机处理数据一般都是以byte(8bit)为单位的,使用BinaryReader读取的数据也是如此,即使读取bool型 ...

  3. HTML 事件(三) 事件流与事件委托

    本篇主要介绍HTML DOM中的事件流和事件委托. 其他事件文章 1. HTML 事件(一) 事件的介绍 2. HTML 事件(二) 事件的注册与注销 3. HTML 事件(三) 事件流与事件委托 4 ...

  4. FILE文件流的中fopen、fread、fseek、fclose的使用

    FILE文件流用于对文件的快速操作,主要的操作函数有fopen.fseek.fread.fclose,在对文件结构比较清楚时使用这几个函数会比较快捷的得到文件中具体位置的数据,提取对我们有用的信息,满 ...

  5. java.IO输入输出流:过滤流:buffer流和data流

    java.io使用了适配器模式装饰模式等设计模式来解决字符流的套接和输入输出问题. 字节流只能一次处理一个字节,为了更方便的操作数据,便加入了套接流. 问题引入:缓冲流为什么比普通的文件字节流效率高? ...

  6. java 字节流与字符流的区别

    字节流与和字符流的使用非常相似,两者除了操作代码上的不同之外,是否还有其他的不同呢?实际上字节流在操作时本身不会用到缓冲区(内存),是文件本身直接操作的,而字符流在操作时使用了缓冲区,通过缓冲区再操作 ...

  7. BZOJ 3504: [Cqoi2014]危桥 [最大流]

    3504: [Cqoi2014]危桥 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1407  Solved: 703[Submit][Status] ...

  8. java I/O流

    输入流(读取数据的流) BufferedInputStream---继承--->FileInputStream--继承--->InputStream------> (1)字节流操作中 ...

  9. Ford-Fulkerson 最大流算法

    流网络(Flow Networks)指的是一个有向图 G = (V, E),其中每条边 (u, v) ∈ E 均有一非负容量 c(u, v) ≥ 0.如果 (u, v) ∉ E 则可以规定 c(u, ...

随机推荐

  1. Eclipse + Git + 码云

    1. 进入码云个人首页 点击自己的名称即可 2. 添加一个项目 3. 在Eclipse中创建一个本地Git Eclipse不建议git目录创建在项目的目录下,因此另选一个目录作为本地Git目录 选择一 ...

  2. js遇到的奇怪问题和坑1

    if(window.confirm('你确定要删除此条信息么')){ // window.open('delete.php'); location.href='delete.php'; return ...

  3. 谷歌Chrome浏览器离线安装包

    下载地址(自选版本) 链接: https://pan.baidu.com/s/1_gVP32tBNTR0pHhQbbM8Iw 密码: rmak 有能力的可以自行到下方地址下载: 最新稳定版:https ...

  4. django django中的HTML控件及参数传递方法 以及 HTML form 里的数据是怎么被包成http request 的?如何在浏览器里查看到这些数据?

    https://www.jb51.net/article/136738.htm django中的HTML控件及参数传递方法 下面小编就为大家分享一篇django中的HTML控件及参数传递方法,具有很好 ...

  5. 转 使用SwingBench 对Oracle RAC DB性能 压力测试

    ###########说明1: 1 Swingbench 简述 1.1 概述 这是Oracle UK的一个员工在一个被抛弃的项目的基础上开发的.目前稳定版本2.2,最新版本2.3,基于JDK1.5.该 ...

  6. python 基础内置函数表及简单介绍

    内建函数名 (表达形式) 主要作用 备注 abs(x) 返回一个X值得绝对值(x=int/float/复数) all(iterable) 如果 iterable 的所有元素均为 True(或 iter ...

  7. iterable- 什么是可迭代对象

    什么是可迭代对象? 可以被For循环执行的 字符串.列表这2个是可迭代对象

  8. 浅谈soa之RESTful

    今晚打算花点时间整理一下面向服务的架构oap.1传统中小型项目架构一般是这样的:(java)html+servlet+jdbc.和(.net)html+handler+ado.net都是在一台应用来. ...

  9. DRF-->2序列化组件的使用和接口设计--get,post,put,delete&优化组件

    !!!!! !!!!! 记住这个图 !!!!! 上篇博客说道DRF序列化组件的get,只是简单的举一个实例,然而在现实生活中我们前后端进行交互的时候更多的用到了Json数据格式,这也就是说前后端交互的 ...

  10. Murano Weekly Meeting 2016.06.07

    Meeting time: 2016.June.7 1:00~2:00 Chairperson:  Kirill Zaitsev, from Mirantis Meeting summary: 1.A ...