题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660

首先,多种方案的出现是因为一个较大的斐波那契数可以变成两个较小的;

用一个01串来表示这个数的斐波那契数情况,1表示有这个斐波那契数,0表示没有;

所以首先尽量把这个数往大的斐波那契数来分,作为DP的初始状态;

记录一个数组p,表示每个斐波那契数在这个01串里的位置;

考虑对于一个数选或不选:若选则没有什么影响,把之前的状态加起来即可;

若不选,则考虑它往前拆,还需看看前一个斐波那契数是否选了;

这是就用到了p数组,就像前缀和一样,可以算出两个斐波那契数之间有多少个0。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,f[],dp[][],cnt,m;
int p[];
int main()
{
scanf("%lld",&n);
f[]=;f[]=;
// while(f[cnt]<=n)f[++cnt]=f[cnt-1]+f[cnt-2];
for(cnt=;;cnt++)
{
f[cnt]=f[cnt-]+f[cnt-];
if(f[cnt]>=n)break;
}
for(;cnt;cnt--)
if(f[cnt]<=n)p[++m]=cnt,n-=f[cnt];
sort(p+,p+m+);//
dp[][]=(p[]-)/;dp[][]=;
for(int i=;i<=m;i++)
{
dp[i][]=dp[i-][]+dp[i-][];
dp[i][]=dp[i-][]*((p[i]-p[i-])/)+dp[i-][]*((p[i]-p[i-]-)/);
}
printf("%lld",dp[m][]+dp[m][]);
return ;
}

bzoj2660最多的方案——数位DP的更多相关文章

  1. bzoj2660最多的方案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 当然可以看出  选了第 i 个斐波那契数<=>选了第 i - 1 和第 i ...

  2. [luogu4133 BJOI2012] 最多的方案 (计数dp)

    题目描述 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的 ...

  3. bzoj 2660: [Beijing wc2012]最多的方案【dp】

    有点神奇的dp 首先注意到任意一个数都能被表示成若干个斐波那契数的和的形式 先求出n可以字典序最大的表示 设f[i][0/1]表示第i个斐波那契数选或者不选 如果当前数不选,那就选比他小的两个数,否则 ...

  4. bzoj2660: [Beijing wc2012]最多的方案

    题目链接 bzoj2660: [Beijing wc2012]最多的方案 题解 对于一个数的斐波那契数列分解,他的最少项分解是唯一的 我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的 ...

  5. 【HDU 4352】 XHXJ's LIS (数位DP+状态压缩+LIS)

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. bzoj3209 花神的数论题 (二进制数位dp)

    二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...

  7. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  8. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

  9. [SDOI2013]淘金 数位DP

    做了好久.... 大致思路: 求出前k大的方格之和即为答案, 先考虑一维的情况,设f[i]为数位上各个数相乘为i的数的总数,也就是对于数i,有f[i]个数它们各个位相乘为i, 再拓展到二维,根据乘法原 ...

随机推荐

  1. spring data jpa 查询部分字段

    @Query("select new map(ah as ah,salq as sqlq,yg as yg, bg as bg,ay as ay) FROM Aj where ahdm=?1 ...

  2. UICollectionView 使用 介绍

    1.1. Collection View 全家福: UICollectionView, UITableView, NSCollectionView n   不直接等效于NSCollectionView ...

  3. ios下读取jason中的nsstring时间并本地化成中文gmt时间显示上午下午

    https://developer.apple.com/library/ios/qa/qa1480/_index.html - (NSDate *)dateFromString:(NSString * ...

  4. python 怎么启动一个外部命令程序, 并且不阻塞当前进程

    http://www.myexception.cn/perl-python/1278887.html http://blog.chinaunix.net/uid-25979788-id-3081912 ...

  5. [React] Use React.memo with a Function Component to get PureComponent Behavior

    A new Higher Order Component (HOC) was recently released in React v16.6.0 called React.memo. This be ...

  6. 怎样去除JSP页面提示:Cannot return from outside a function or method.

     今天用myeclipse10写JSP页面时出现: Cannot return from outside a function or method. onClick="return ch ...

  7. 手写 redux 和 react-redux

    1.手写 redux redux.js /** * 手写 redux */ export function createStore(reducer) { // 当前状态 let currentStat ...

  8. sphinx的配置和管理

    网上配置文档众多,但是对着他们的文档来做老是出问题,于是花了点时间研究了一下,写成总结,方便以后查阅.也希望学习sphinx的朋友能少走弯路.Coreseek的安装请参考:http://blog.ch ...

  9. sql server 关于表中只增标识问题 C# 实现自动化打开和关闭可执行文件(或 关闭停止与系统交互的可执行文件) ajaxfileupload插件上传图片功能,用MVC和aspx做后台各写了一个案例 将小写阿拉伯数字转换成大写的汉字, C# WinForm 中英文实现, 国际化实现的简单方法 ASP.NET Core 2 学习笔记(六)ASP.NET Core 2 学习笔记(三)

    sql server 关于表中只增标识问题   由于我们系统时间用的过长,数据量大,设计是采用自增ID 我们插入数据的时候把ID也写进去,我们可以采用 关闭和开启自增标识 没有关闭的时候 ,提示一下错 ...

  10. php使用魔法函数和不使用魔法函数比较

    /** * use magic 0.31868386268616s * not use magic 0.11876797676086s */ class Test { private $varstr ...