题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2295

Radar

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4106    Accepted Submission(s): 1576

Problem Description
N cities of the Java Kingdom need to be covered by radars for being in a state of war. Since the kingdom has M radar stations but only K operators, we can at most operate K radars. All radars have the same circular coverage with a radius of R. Our goal is to
minimize R while covering the entire city with no more than K radars.
 
Input
The input consists of several test cases. The first line of the input consists of an integer T, indicating the number of test cases. The first line of each test case consists of 3 integers: N, M, K, representing the number of cities, the number of radar stations
and the number of operators. Each of the following N lines consists of the coordinate of a city.
Each of the last M lines consists of the coordinate of a radar station.

All coordinates are separated by one space.
Technical Specification

1. 1 ≤ T ≤ 20
2. 1 ≤ N, M ≤ 50
3. 1 ≤ K ≤ M
4. 0 ≤ X, Y ≤ 1000

 
Output
For each test case, output the radius on a single line, rounded to six fractional digits.
 
Sample Input
1
3 3 2
3 4
3 1
5 4
1 1
2 2
3 3
 
Sample Output
2.236068
 
Source

题解:

超时方法:

1.对于DLX的矩阵:行代表着雷达与城市的距离, 列代表着城市。矩阵大小250*50。

2.Dancing跳起来,当R[0]==0时, 取当前所选行中,距离的最大值dis(这样才能覆盖掉所有城市),然后再更新答案ans,ans = min(ans, dis)。

3.结果矩阵有点大, 超时了。

4.错误思想分析:把雷达与城市的距离作为行,实际上是太明智的。因为题目说明了每个雷达的接收半径是相同的,而以上方法选出来的每个雷达的接收半径是相异的,然后又再取最大值,那为何不每次都取最大值(相同值)呢? 如果取相同值,那么行就是雷达,列就是城市,矩阵的大小就减少了。但是又怎么确定雷达的接收半径呢?如下:

正确方法:

1.雷达作为行, 城市作为列。

2.二分雷达的接收范围,每次二分都:根据接收半径更新矩阵中所含的元素,然后再进行一次Dance(),如果能覆盖掉所有城市,则缩小半径,否则扩大半径。

超时方法:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const int MAXN = +;
const int MAXM = +;
const int maxnode = 1e5+; double city[MAXN][], radar[MAXN][];
double r[MAXN*MAXM];
int k; struct DLX
{
int n, m, size;
int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode];
int H[MAXN*MAXM], S[MAXN*MAXM];
double ansd, ans[MAXN*MAXM]; void init(int _n, int _m)
{
n = _n;
m = _m;
for(int i = ; i<=m; i++)
{
S[i] = ;
U[i] = D[i] = i;
L[i] = i-;
R[i] = i+;
}
R[m] = ; L[] = m;
size = m;
for(int i = ; i<=n; i++) H[i] = -;
} void Link(int r, int c)
{
size++;
Row[size] = r;
Col[size] = c;
S[Col[size]]++;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r]==-) H[r] = L[size] = R[size] = size;
else
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
} void remove(int c)
{
for(int i = D[c]; i!=c; i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
} bool v[MAXM];
int f()
{
int ret = ;
for(int c = R[]; c!=; c = R[c])
v[c] = true;
for(int c = R[]; c!=; c = R[c])
if(v[c])
{
ret++;
v[c] = false;
for(int i = D[c]; i!=c; i = D[i])
for(int j = R[i]; j!=i; j = R[j])
v[Col[j]] = false;
}
return ret;
} void resume(int c)
{
for(int i = U[c]; i!=c; i = U[i])
L[R[i]] = R[L[i]] = i;
} void Dance(int d)
{
if(d+f()>k) return;
if(R[]==)
{
double tmp = -1.0;
for(int i = ; i<d; i++)
tmp = max(tmp, ans[i]);
ansd = min(tmp, ansd);
return;
} int c = R[];
for(int i = R[]; i!=; i = R[i])
if(S[i]<S[c])
c = i;
for(int i = D[c]; i!=c; i = D[i])
{
ans[d] = r[Row[i]];
remove(i);
for(int j = R[i]; j!=i; j = R[j]) remove(j);
Dance(d+);
for(int j = L[i]; j!=i; j = L[j]) resume(j);
resume(i);
}
}
}; double dis(double x1, double y1, double x2, double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} DLX dlx;
int main()
{
int T;
int n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &k);
dlx.init(n*m, n);
for(int i = ; i<=n; i++)
scanf("%lf%lf",&city[i][], &city[i][]);
for(int i = ; i<=m; i++)
scanf("%lf%lf",&radar[i][], &radar[i][]); for(int i = ; i<=m; i++)
for(int j = ; j<=n; j++)
{
double tmp = dis(radar[i][], radar[i][], city[j][], city[j][]);
r[(i-)*n+j] = tmp;
for(int t = ; t<=n; t++)
if(dis(radar[i][], radar[i][], city[t][], city[t][])<=tmp)
dlx.Link((i-)*n+j, t);
}
dlx.ansd = 1.0*INF;
dlx.Dance();
printf("%.6f\n", dlx.ansd);
}
return ;
}

正确方法:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const double EPS = 1e-;
const int MAXN = +;
const int MAXM = +;
const int maxnode = 1e5+; double city[MAXN][], radar[MAXN][];
double r[MAXN*MAXM];
int k; struct DLX
{
int n, m, size;
int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode];
int H[MAXN*MAXM], S[MAXN*MAXM];
double ansd, ans[MAXN*MAXM]; void init(int _n, int _m)
{
n = _n;
m = _m;
for(int i = ; i<=m; i++)
{
S[i] = ;
U[i] = D[i] = i;
L[i] = i-;
R[i] = i+;
}
R[m] = ; L[] = m;
size = m;
for(int i = ; i<=n; i++) H[i] = -;
} void Link(int r, int c)
{
size++;
Row[size] = r;
Col[size] = c;
S[Col[size]]++;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r]==-) H[r] = L[size] = R[size] = size;
else
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
} void remove(int c)
{
for(int i = D[c]; i!=c; i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
} void resume(int c)
{
for(int i = U[c]; i!=c; i = U[i])
L[R[i]] = R[L[i]] = i;
} bool v[MAXM];
int f()
{
int ret = ;
for(int c = R[]; c!=; c = R[c])
v[c] = true;
for(int c = R[]; c!=; c = R[c])
if(v[c])
{
ret++;
v[c] = false;
for(int i = D[c]; i!=c; i = D[i])
for(int j = R[i]; j!=i; j = R[j])
v[Col[j]] = false;
}
return ret;
} bool Dance(int d)
{
if(d+f()>k) return false;
if(R[]==) return true; int c = R[];
for(int i = R[]; i!=; i = R[i])
if(S[i]<S[c]) c = i;
for(int i = D[c]; i!=c; i = D[i])
{
remove(i);
for(int j = R[i]; j!=i; j = R[j]) remove(j);
if(Dance(d+))return true;
for(int j = L[i]; j!=i; j = L[j]) resume(j);
resume(i);
}
return false;
}
}; double dis(double x1, double y1, double x2, double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} DLX dlx;
int main()
{
int T;
int n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i<=n; i++)
scanf("%lf%lf",&city[i][], &city[i][]);
for(int i = ; i<=m; i++)
scanf("%lf%lf",&radar[i][], &radar[i][]); double l = 0.0, r = 2000.0;
while(l+EPS<=r)
{
double mid = (l+r)/;
dlx.init(m, n);
for(int i = ; i<=m; i++)
for(int j = ; j<=n; j++)
if(dis(radar[i][], radar[i][], city[j][], city[j][])<=mid)
dlx.Link(i, j);
if(dlx.Dance())
r = mid - EPS;
else
l = mid + EPS;
}
printf("%.6lf\n",l);
}
return ;
}

HDU2295 Radar —— Dancing Links 可重复覆盖的更多相关文章

  1. FZU1686 神龙的难题 —— Dancing Links 可重复覆盖

    题目链接:https://vjudge.net/problem/FZU-1686 Problem 1686 神龙的难题 Accept: 812    Submit: 2394 Time Limit: ...

  2. HDU 2295 Radar dancing links 重复覆盖

    就是dancing links 求最小支配集,重复覆盖 精确覆盖时:每次缓存数据的时候,既删除行又删除列(这里的删除列,只是删除表头) 重复覆盖的时候:只删除列,因为可以重复覆盖 然后重复覆盖有一个估 ...

  3. 【POJ3740】Easy Finding DLX(Dancing Links)精确覆盖问题

    题意:多组数据,每组数据给你几行数,要求选出当中几行.使得每一列都有且仅有一个1.询问是可不可行,或者说能不能找出来. 题解:1.暴搜.2.DLX(Dancing links). 本文写的是DLX. ...

  4. hihoCoder #1321 : 搜索五•数独 (Dancing Links ,精确覆盖)

    hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. ...

  5. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  6. ZOJ 3209 Treasure Map (Dancing Links 精确覆盖 )

    题意 :  给你一个大小为 n * m 的矩形 , 坐标是( 0 , 0 ) ~ ( n , m )  .然后给你 p 个小矩形 . 坐标是( x1 , y1 ) ~ ( x2 , y2 ) , 你选 ...

  7. 浅入 dancing links x(舞蹈链算法)

    abastract:利用dancing links 解决精确覆盖问题,例如数独,n皇后问题:以及重复覆盖问题. 要学习dacning links 算法,首先要先了解该算法适用的问题,精确覆盖问题和重复 ...

  8. poj 3074 Sudoku(Dancing Links)

    Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8152   Accepted: 2862 Descriptio ...

  9. HDU 2295 Radar (二分 + Dancing Links 重复覆盖模型 )

    以下转自 这里 : 最小支配集问题:二分枚举最小距离,判断可行性.可行性即重复覆盖模型,DLX解之. A*的启发函数: 对当前矩阵来说,选择一个未被控制的列,很明显该列最少需要1个行来控制,所以ans ...

随机推荐

  1. Spell Boost

    Spell Boost 时间限制: 1 Sec  内存限制: 128 MB 题目描述 Shadowverse is a funny card game. One day you are playing ...

  2. 济南学习 Day 5 T2 晚

    等比数列(sequence) [题目描述] 判断一个数列是否为等比数列. 等比数列的定义为能被表示成a,aq,aq^2,aq^3...的数列,其中a和q不等于0. [输入说明] 输入文件的第一行有一个 ...

  3. 标准C程序设计七---05

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  4. Python入门--8--字符串

    一.创建.修改字符串 str1='呆呆 槑槑 木木 林林' str1[1] #输出呆 str1[2] #输出' ',也就是空值 str1=str[:5]+'插入乖呆 '+str1[5:] #修改字符串 ...

  5. 接口自动化测试之HTTP协议详解

    协议 简单理解,计算机与计算机之间的通讯语言就叫做协议,不同的计算机之间只有使用相同的协议才能通信.所以网络协议就是为计算机网络中进行数据交换而建立的规则,标准或约定的集合. OSI模型 1978年国 ...

  6. disruptor 核心链路应用场景

    核心链路一般比较复杂并且需要考虑:服务之间相互依赖性.流程能够走完.人员的变动等情况 要考虑:兜底.补偿. 常见解决方案是:1)完全解耦 2)模板模式 其他解决方案:1)有限状态机框架:spring- ...

  7. Struts2 与SpringMVC之比较

    1.Struts2是类级别的拦截, 一个类对应一个request上下文,SpringMVC是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应,所以说从架构本身上Spr ...

  8. MD5加密算法Java代码

    原文:http://www.open-open.com/code/view/1428398234916 import java.security.MessageDigest; import java. ...

  9. Mysql 性能优化20个原则(3)

    12. Prepared Statements Prepared Statements很像存储过程,是一种运行在后台的SQL语句集合,我们可以从使用 prepared statements 获得很多好 ...

  10. "听话"的品格的症状

    反思了一下,也许是因为以前比较听话,听大人的话,听老师的话,听长辈的话.听电视剧的话..........哈哈 现在发现,世界是靠自己去认识,去体会的,别人的经验都只能作为参考,绝对不能不加思考的照搬硬 ...