虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的

http://www.cnblogs.com/xzz_233/p/8365414.html

测正确性题目:https://www.luogu.org/problemnew/show/P1403

这个好像叫d函数
看$d=(a_1+1)(a_2+1)\cdots(a_k+1)$
然而还不行,你还要记这个数的$a_1$(定义在上面)记为f
首先,如果p是质数,那么d(p)=2,f(p)=1
然后,将合数n分解成n=px(p是n最小的质因子),
若$p\nmid x$则d(n)=2d(x),f(n)=1(d乘2相当于是要不要新选p)
否则$f(n)=f(x)+1$,$d(n)=d(x)*\frac{f(n)+1}{f(x)+1}$


https://www.luogu.org/problemnew/show/P3935

题目给的f(x)就是x的约数个数。。。

那么,$\sum_{i=1}^n(\sum_{d|n}1)=\sum_{i=1}^n({\lfloor}{\frac{n}{i}}{\rfloor})$

数论分块即可。。。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define md 998244353
ll x,y,ans;
int main()
{
ll i,j;
scanf("%lld%lld",&x,&y);
for(i=;i<=y;i=j+)
{
j=min(y,y/(y/i));
ans+=(y/i)*(j-i+);
}
x--;
for(i=;i<=x;i=j+)
{
j=min(x,x/(x/i));
ans-=(x/i)*(j-i+);
}
printf("%lld",ans%md);
return ;
}

洛谷 P3935 Calculating的更多相关文章

  1. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. 洛谷 - P3935 - Calculating - 整除分块

    https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...

  4. [洛谷P3935]Calculating

    题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...

  5. 洛谷 P3935 Calculating 题解

    原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...

  6. [洛谷3935]Calculating

    题目链接:https://www.luogu.org/problemnew/show/P3935 首先显然有\(\sum\limits_{i=l}^rf(i)=\sum\limits_{i=1}^rf ...

  7. 洛谷P3935 Calculation [数论分块]

    题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...

  8. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. Java小日历

    自己写的一个小小日历.执行程序是柯自己主动定位到当前年月日,当点击下个月button是会定位到下个月的这一天,就是说天数不会变.当在一个月中点击某一天时,以下的时间也会随时变化. import jav ...

  2. jmeter3.0_bodydata中存在中文乱码

    jmeter3.0_bodydata中存在中文乱码 1.进入jmeter.properties配置文件 找到#jsyntaxtextarea.font.family=Hack ,并将“#”取消并重启j ...

  3. 基于redis集群实现的分布式锁,可用于秒杀商品的库存数量管理,有測试代码(何志雄)

    转载请标明出处. 在分布式系统中,常常会出现须要竞争同一资源的情况,本代码基于redis3.0.1+jedis2.7.1实现了分布式锁. redis集群的搭建,请见我的另外一篇文章:<>& ...

  4. CentOS笔记-vim

    详细的参考http://www.runoob.com/linux/linux-vim.html i插入 I 行首插入 A 行尾插入 fn + ←,行首 fn + →,行尾 fn + ↑,向上翻页 fn ...

  5. p1697食物链

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A.现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说法 ...

  6. 阿里云短信服务发送短信验证码(JAVA开发此功能)

    开发此功能需注册阿里云账号,并开通短信服务(免费开通) 充值后,不会影响业务的正常使用!(因为发送验证类短信:1-10万范围的短信是0.045元/条).开发测试使用,充2块钱测试足够了 可参考阿里云官 ...

  7. 中文用户名的js检验正则

    原文:http://www.jb51.net/article/20719.htm 好多网站需要用中文用户名注册,下面的代码就是客户端检测.强烈建议后台也要控制一下. username1: " ...

  8. 【AHOI2009】中国象棋

    [题目链接] 点击打开链接 [算法] 动态规划 f[i][j][k]表示前i行,有j列放了1个,有k列放了两个 分六种情况讨论即可 [代码] #include<bits/stdc++.h> ...

  9. ng2中文文档地址

    https://angular.cn/docs/ts/latest/guide/displaying-data.html

  10. jQuery测试结果

    您的回答: 1.下面哪种说法是正确的? 您的回答:jQuery 是 JavaScript 库 2.jQuery 使用 CSS 选择器来选取元素? 您的回答:正确 3.jQuery 的简写是? 您的回答 ...