51nod1256【exgcd求逆元】
思路:
把k*M%N=1可以写成一个不定方程,(k*M)%N=(N*x+1)%N,那么就是求k*M-N*x=1,k最小,不定方程我们可以直接利用exgcd,中间还搞错了;
//小小地讲一下exgcd球不定方程原理
对于ax+by=gcd(a,b);
我们设一下a>b,在简单直接把b=0时,gcd(a,b)=a.此时,x=1,y=0;
接着,a>b>0,我们这里可以摆两个式子:①:ax1+by1=gcd(a,b);继续,②:bx2+(a mod b)y2=gcd( b , a mod b );第二个式子为何呢?这就是gcd的辗转相除法的算法啊。而且gcd(a,b)=gcd(b,a mod b);
然后我们就能将gcd左边两个等式列个等式:ax1+by1=bx2+(a mod b)y2;额。。。a mod b可以写成?a-(a/b)b对吧,那么等式变成ax1+ by1= bx2+ (a - (a / b) * b)y2=bx2+ay2 - (a / b)by2 ;我们把ax1+ by1=bx2+ay2 - (a / b)by2拎出来,整理一下,写成:ax1+by1=ay2+b(x2-(a/b)y2); 那么很明显我们可以得到,x1=y2,y1=x2-(a/b)y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e4;
void exgcd(LL &k,LL &x,LL a,LL b)
{
if(b==0)
{
k=1;
x=0;
return;
}
exgcd(k,x,b,a%b);
LL temp=k;
k=x;
x=temp-(a/b)*x;
}
int main()
{
LL n,m;
LL k,x;
scanf("%lld%lld",&m,&n);
exgcd(k,x,m,n);
while(k<0)
k=(k+n)%n;
printf("%lld\n",k);
return 0;
}
51nod1256【exgcd求逆元】的更多相关文章
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- #6392. 「THUPC2018」密码学第三次小作业 / Rsa (exgcd求逆元+快速幂+快速乘)
题目链接:https://loj.ac/problem/6392 题目大意:给定五个正整数c1,c2,e1,e2,N,其中e1与e2互质,且满足 c1 = m^e1 mod N c2 = m^e2 m ...
- codeforces 492E. Vanya and Field(exgcd求逆元)
题目链接:codeforces 492e vanya and field 留个扩展gcd求逆元的板子. 设i,j为每颗苹果树的位置,因为gcd(n,dx) = 1,gcd(n,dy) = 1,所以当走 ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)
礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...
- 求组合数、求逆元、求阶乘 O(n)
在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...
- 求逆元的两种方法+求逆元的O(n)递推算法
到国庆假期都是复习阶段..所以把一些东西整理重温一下. gcd(a,p)=1,ax≡1(%p),则x为a的逆元.注意前提:gcd(a,p)=1; 方法一:拓展欧几里得 gcd(a,p)=1,ax≡1( ...
- 扩展gcd求逆元
当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
随机推荐
- 集成CCFlow工作流与GPM的办公系统驰骋CCOA介绍(三)
通过组织结构能够对项目的岗位.部门.人员进行增删改操作. 加入新部门.并为新部门加入人员: 选中部门后,点击鼠标右键,能够选择加入平级部门或下属部门. 新建部门时,须要给部门设置部门编号.名称.与部门 ...
- poj(1011)——Sticks(经典的dfs+剪枝)
题目的大致意思是: 如今有n根木棍,然后须要把它们拼成相同长度的木棍,问满足这个条件的最短的长度是多少? 想法嘛:那肯定是dfs把长度搜一遍就好,但问题的关键是这里会超时.那么就要用到剪枝的原理了. ...
- dsBlog_杂类
C++,MFC的综合类的博客. 1. http://www.cnblogs.com/mfryf/category/354043.html
- 宠物连连看2完整Android代码项目
宠物连连看2完整代码,该源代码支持多种风格的连连看游戏的,如有国旗类的连连看,还有宠物连连看的等,主要的功能实现了无尽关卡挑战模式.还有催命倒计时,以及链接提示,暂停.多样图片集,挑战眼力和速度等,而 ...
- Delphi ActiveForm发布全攻略
论坛上很多朋友(也包括我)提到ActiveForm的发布问题,都没有得到很好的解决.下面是本人开发ActiveForm的一点经验,拿出来跟大家分享,开发环境为 Win2000Server,IIS5.0 ...
- 安全性测试--CSRF攻击
一.CSRF是什么? CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSR ...
- Getting Started with the Intel Media SDK
By Gael Hofemeier on March 19, 2015 Follow Gael on Twitter: @GaelHof Media SDK Developer’s Guide Med ...
- 隐马尔科夫模型HMM
崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本 ...
- C++ main函数中参数argc和argv含义及用法
argc 是 argument count的缩写,表示传入main函数的参数个数: argv 是 argument vector的缩写,表示传入main函数的参数序列或指针,并且第一个参数argv[0 ...
- June Challenge 2017
A Good Set 分析:水题,选奇数即可 #include "iostream" #include "cstdio" #include "cstr ...