51nod1256【exgcd求逆元】
思路:
把k*M%N=1可以写成一个不定方程,(k*M)%N=(N*x+1)%N,那么就是求k*M-N*x=1,k最小,不定方程我们可以直接利用exgcd,中间还搞错了;
//小小地讲一下exgcd球不定方程原理
对于ax+by=gcd(a,b);
我们设一下a>b,在简单直接把b=0时,gcd(a,b)=a.此时,x=1,y=0;
接着,a>b>0,我们这里可以摆两个式子:①:ax1+by1=gcd(a,b);继续,②:bx2+(a mod b)y2=gcd( b , a mod b );第二个式子为何呢?这就是gcd的辗转相除法的算法啊。而且gcd(a,b)=gcd(b,a mod b);
然后我们就能将gcd左边两个等式列个等式:ax1+by1=bx2+(a mod b)y2;额。。。a mod b可以写成?a-(a/b)b对吧,那么等式变成ax1+ by1= bx2+ (a - (a / b) * b)y2=bx2+ay2 - (a / b)by2 ;我们把ax1+ by1=bx2+ay2 - (a / b)by2拎出来,整理一下,写成:ax1+by1=ay2+b(x2-(a/b)y2); 那么很明显我们可以得到,x1=y2,y1=x2-(a/b)y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e4;
void exgcd(LL &k,LL &x,LL a,LL b)
{
if(b==0)
{
k=1;
x=0;
return;
}
exgcd(k,x,b,a%b);
LL temp=k;
k=x;
x=temp-(a/b)*x;
}
int main()
{
LL n,m;
LL k,x;
scanf("%lld%lld",&m,&n);
exgcd(k,x,m,n);
while(k<0)
k=(k+n)%n;
printf("%lld\n",k);
return 0;
}
51nod1256【exgcd求逆元】的更多相关文章
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- #6392. 「THUPC2018」密码学第三次小作业 / Rsa (exgcd求逆元+快速幂+快速乘)
题目链接:https://loj.ac/problem/6392 题目大意:给定五个正整数c1,c2,e1,e2,N,其中e1与e2互质,且满足 c1 = m^e1 mod N c2 = m^e2 m ...
- codeforces 492E. Vanya and Field(exgcd求逆元)
题目链接:codeforces 492e vanya and field 留个扩展gcd求逆元的板子. 设i,j为每颗苹果树的位置,因为gcd(n,dx) = 1,gcd(n,dy) = 1,所以当走 ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)
礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...
- 求组合数、求逆元、求阶乘 O(n)
在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...
- 求逆元的两种方法+求逆元的O(n)递推算法
到国庆假期都是复习阶段..所以把一些东西整理重温一下. gcd(a,p)=1,ax≡1(%p),则x为a的逆元.注意前提:gcd(a,p)=1; 方法一:拓展欧几里得 gcd(a,p)=1,ax≡1( ...
- 扩展gcd求逆元
当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
随机推荐
- AspNet MVC4 教学-23:Asp.Net MVC4 Display And Editor 模板技术高速应用Demo
A.创建Basic类型的项目. B.在Model文件夹下,创建3个文件: Role.cs: using System; using System.Collections.Generic; using ...
- 安卓APK瘦身
之前打包的时候直接就用eclipse或者android studio直接生成签名文件,并没有关心大小问题,近期有人问我有没有对APK进行瘦身.对这方面内容一致没有关注过,今天试用了各种方式把项目签名a ...
- ansible 基本命令学习与踩坑
1. 命令行参数 -v,–verbose 详细模式,如果命令执行成功,输出详细的结果(-vv –vvv -vvvv) -i PATH,–inventory=PATH 指定host文件的路径,默认是在/ ...
- chrome.declarativeWebRequest
chrome.declarativeWebRequest 清单文件 规则 条件与操作的求值 使用优先级覆盖规则 类型 HeaderFilter RequestMatcher CancelRequest ...
- 使用Axis2开发WebService
一.准备 1.下载Axis2.eclipse插件 axis2-1.6.2-war.zip: http://mirror.bjtu.edu.cn/apache//axis/axis2/java/core ...
- iOS APP第一次上架遇到的问题
现在苹果审核时越来越严了,我们有两个APP时同时上线的,代码用的也是一套的.但是有其中一个是第一次发布所以就拒了,信息就是下图.大概意思是用到支付了吗?用户是怎么来的.值需要把这些信息回复了.就OK ...
- LeetCode(11)题解: Container With Most Water
https://leetcode.com/problems/container-with-most-water/ 题目: Given n non-negative integers a1, a2, . ...
- Python 002- 爬虫爬取淘宝上耳机的信息
参照:https://mp.weixin.qq.com/s/gwzym3Za-qQAiEnVP2eYjQ 一般看源码就可以解决问题啦 #-*- coding:utf-8 -*- import re i ...
- 使用Microsoft Office 2007将文档转换为PDF
点击帮助 输入关键词PDF后搜索 点击进入Save or convert to PDF or XPS 点击进入2007 Microsoft Office Add-in: Microsoft Save ...
- HTML canvas
什么是 Canvas? HTML5 的 canvas 元素使用 JavaScript 在网页上绘制图像. 画布是一个矩形区域,您可以控制其每一像素. canvas 拥有多种绘制路径.矩形.圆形.字符以 ...