[ JSOI 2015 ] Salesman
\(\\\)
\(Description\)
给出一棵以\(1\)为根的\(N\)个节点的树,开始的时候你在\(1\)号节点。
除了\(1\)号节点以外,每个点都有访问次数限制\(t_i\),即到达该点的次数上限。
除了\(1\)号点每个点还有一个权值\(w_i\),这个权值可以是负的,每个点被第一次到达时你会被迫得到他的点权,以后该点点权变为\(0\)。
求满足所有次数上限的前提下,从\(1\)号点出发,最后回到\(1\)号点的一条路径所得到的最大点权和,每个点可以经过多次。
同时你还要输出这个最大点权和对应的方案是否唯一。
- \(N\in [1,10^5]\)
\(\\\)
\(Solution\)
第一问直接树形\(DP\)就好,从根节点到当前点的路径会消耗一次当前点的访问次数,而每次从子树回溯上来也会消耗一次访问次数,所以对于节点\(u\),最多只能选\(t_u-1\)棵子树访问。直接\(DFS\)后将子树最大贡献排序,在所有正数答案里选前\(t_u-1\)个子树作为自己的答案。
关于方案唯一性的问题,维护一个\(g\)数组表示当前节点最优解是否唯一。转移时只要有一个子树方案数有多种当前节点的方案数就是多种。同时如果下一个要选择的子树(因为访问上限的关系不能选)和当前最后一个选择的子树答案相同,或者答案中选择了包含贡献为\(0\)的子树,方案也不是唯一的。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
#define inf 200000000
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
bool g[N];
int n,m,tot,hd[N];
int t[N],f[N],val[N],tmp[N];
struct edge{int to,nxt;}e[N<<1];
inline void add(int u,int v){
e[++tot].to=v; e[tot].nxt=hd[u]; hd[u]=tot;
}
inline bool cmp(int x,int y){return f[x]>f[y];}
void dfs(int u,int fa){
f[u]=val[u];
for(R int i=hd[u],v;i;i=e[i].nxt) if((v=e[i].to)!=fa) dfs(v,u);
tmp[0]=0;
for(R int i=hd[u],v;i;i=e[i].nxt) if((v=e[i].to)!=fa) tmp[++tmp[0]]=v;
sort(tmp+1,tmp+1+tmp[0],cmp);
int ptr=1,lim=min(tmp[0],t[u]-1);
while(ptr<=lim&&f[tmp[ptr]]>=0) f[u]+=f[tmp[ptr]],g[u]|=g[tmp[ptr]],++ptr;
if((ptr<=tmp[0]&&ptr>1&&f[tmp[ptr]]==f[tmp[ptr-1]])||(f[tmp[ptr-1]]==0&&ptr>1)) g[u]=1;
}
int main(){
n=rd();
for(R int i=2;i<=n;++i) val[i]=rd();
for(R int i=2;i<=n;++i) t[i]=rd();
for(R int i=1,u,v;i<n;++i){
u=rd(); v=rd(); add(u,v); add(v,u);
}
val[1]=0; t[1]=inf; dfs(1,0);
printf("%d\n",f[1]);
puts(g[1]?"solution is not unique":"solution is unique");
return 0;
}
[ JSOI 2015 ] Salesman的更多相关文章
- [JSOI 2015] 最大公约数
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4488 [算法] 不妨首先枚举左端点 注意到对于任意一个正整数n , 其质因子个数是l ...
- [JSOI 2015] 子集选取
4475: [Jsoi2015]子集选取 Time Limit: 1 Sec Memory Limit: 512 MBSubmit: 363 Solved: 255[Submit][Status] ...
- bzoj 4481 [ Jsoi 2015 ] 非诚勿扰 —— 期望
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4481 太弱了这种题都要看半天TJ...:https://blog.csdn.net/chai ...
- 送礼物「JSOI 2015」RMQ+01分数规划
[题目描述] 礼品店一共有N件礼物排成一列,每件礼物都有它的美观度.排在第\(i(1\leq i\leq N)\)个位置的礼物美观度为正整数\(A_I\).JYY决定选出其中连续的一段,即编号为礼物\ ...
- JSOI 2015 送礼物
[BZOJ4476] [JSOI2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都 ...
- GDOI#345. 送礼物「JSOI 2015」01分数规划+RMQ
题目描述 JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成一列,而且相邻的礼物之间有一种神秘的美感.于是,JYY决定从中 ...
- JSOI BZOJ4472 salesman
题目传送门 题目大意 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线. 小T 可以准确地估计出在每个城镇停留的净收益.这些净收益可能 ...
- 【树形DP】JSOI BZOJ4472 salesman
题目内容 vjudge链接 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇 之间都只有唯一的可能经过其它城镇的路线. 小T 可以准确地估计出在每个城镇停留的净收 益.这些 ...
- [Luogu 3794]签到题IV
Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...
随机推荐
- vue.js组件之间的通讯-----父亲向儿子传递数据,儿子接收父亲的数据
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Mysql修改自增主键的起始值及查询自增主键的下一个值
MySQL [xxx_mall]> alter table shop_base_info AUTO_INCREMENT=11000;Query OK, 0 rows affected (0.0 ...
- 29、Java并发性和多线程-非阻塞算法
以下内容转自http://ifeve.com/non-blocking-algorithms/: 在并发上下文中,非阻塞算法是一种允许线程在阻塞其他线程的情况下访问共享状态的算法.在绝大多数项目中,在 ...
- Redis: Useful commands
SELECT X - Select database (the X must be int) CONFIG GET databases - Get databases number INFO keys ...
- 猫猫学iOS 之CoreLocation反地理编码小Demo输入经纬度得到城市
猫猫分享,必须精品 原创文章,欢迎转载.转载请注明:翟乃玉的博客 地址:http://blog.csdn.net/u013357243 一:效果 输入经纬度,能够得到相应的地名 二:思路 跟地里编码差 ...
- oracle11g dataguard failover重建后归档日志没有被应用被NO的问题
1.主库从库归档记录不一致.例如以下所看到的: 做完failover后,坏的旧主库变成了新的从库,可是新从库的归档日志记录不一致,就是archive log list;出来的和v$archived_l ...
- JQuery之操作array
1:split 函数将字符串按某个字符分割,将分割后的结果存入字符串数组中 function SplitUsersInformation(users) { var usersArray = users ...
- 谈谈c++纯虚函数的意义!
纯虚函数的存在有什么意义呢?相信大学假设有c++这么课程.在讲到纯虚函数时,必然会讲到纯虚函数是面向接口编程的基础. 如今和大家分享下纯虚函数设计的原由.目的.产生的效果. 现代软件project很庞 ...
- 玩转CPU之直线
近期在看编程之美,看到第一个问题时,一下子就被吸引了,原来在windows 的任务管理器中还能够让CPU舞动起来,再一次的相信了编程中仅仅有想不到没有做不到,对于书中的做法和网上的实现大致都同样.只是 ...
- linux 统计 文件夹信息
ls -lR|grep "^-"|wc -l Linux 统计某个字符串出现的次数 - ywl925 - 博客园 https://www.cnblogs.com/ywl925/p/ ...