题目大意:

一个无向图 每个点有权值 支持两个操作

1 修改某个点的权值

2 查询a-b所有简单路径的点上的最小值

思路:

可以把图变成圆方树 然后树链剖分 维护

对于每个方点使用可删堆维护

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define inf 2139062143
#define ll long long
#define MAXN 200100
#define V g2.to[i]
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;if(ch=='A'||ch=='C') return ch-'A';ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,Q,tot;
struct graph
{
int cnt,fst[MAXN],nxt[MAXN<<],to[MAXN<<];
graph(){memset(fst,,sizeof(fst));cnt=;}
void add(int u,int v) {nxt[++cnt]=fst[u],fst[u]=cnt,to[cnt]=v;}
}g1,g2;
int st[MAXN],dfn[MAXN],low[MAXN],top,stp,val[MAXN];
int hsh[MAXN],dep[MAXN],bl[MAXN],fa[MAXN],sz[MAXN];
priority_queue <int,vector<int>,greater<int> > q[MAXN],d[MAXN];
void tarjan(int x)
{
dfn[x]=low[x]=++stp,st[++top]=x;
sz[x]=;int now=;
for(int i=g1.fst[x];i;i=g1.nxt[i])
if(!dfn[g1.to[i]])
{
tarjan(g1.to[i]);low[x]=min(low[x],low[g1.to[i]]);
if(low[g1.to[i]]<dfn[x]) continue;m++;
do{now=st[top--],sz[m]+=sz[now];g2.add(m,now);}
while(now!=g1.to[i]);
g2.add(x,m);sz[x]+=sz[m];
}
else low[x]=min(low[x],dfn[g1.to[i]]);
}
void dfs(int x)
{
for(int i=g2.fst[x];i;i=g2.nxt[i]) {dep[V]=dep[x]+,fa[V]=x;dfs(V);}
}
void dfs(int x,int anc)
{
hsh[x]=++tot,bl[x]=anc;int hvs=,tmp= x<=n;
for(int i=g2.fst[x];i;i=g2.nxt[i])
{
if(sz[V]>sz[hvs]) hvs=V;
if(!tmp) q[x].push(val[V]);
}
if(!hvs) return ;dfs(hvs,anc);
for(int i=g2.fst[x];i;i=g2.nxt[i])
if(V!=hvs) dfs(V,V);
}
int mn[MAXN<<];
void mdf(int k,int l,int r,int x,int w)
{
if(l==r) {mn[k]=w;return ;}
int mid=(l+r)>>;
if(x<=mid) mdf(k<<,l,mid,x,w);
else mdf(k<<|,mid+,r,x,w);
mn[k]=min(mn[k<<],mn[k<<|]);
}
int query(int k,int l,int r,int a,int b)
{
if(l==a&&r==b) return mn[k];
int mid=(l+r)>>;
if(b<=mid) return query(k<<,l,mid,a,b);
else if(a>mid) return query(k<<|,mid+,r,a,b);
else return min(query(k<<,l,mid,a,mid),query(k<<|,mid+,r,mid+,b));
}
void pop(int x)
{
while(q[x].top()==d[x].top()&&!d[x].empty()) {q[x].pop();d[x].pop();}
}
int main()
{
n=read(),m=read(),Q=read();int a,b,c,res;
for(int i=;i<=n;i++) val[i]=read();
while(m--) {a=read(),b=read();g1.add(a,b);g1.add(b,a);}
m=n;tarjan();dfs();dfs(,);
memset(mn,,sizeof(mn));
for(int i=;i<=m;i++)
if(i>n) mdf(,,m,hsh[i],q[i].top());
else mdf(,,m,hsh[i],val[i]);
while(Q--)
{
c=read(),a=read(),b=read(),res=inf;
if(c^)
{
while(bl[a]!=bl[b])
{
if(dep[bl[a]]<dep[bl[b]]) swap(a,b);
res=min(res,query(,,m,hsh[bl[a]],hsh[a]));
a=fa[bl[a]];
}
if(dep[a]>dep[b]) swap(a,b);
if(a>n) res=min(res,val[fa[a]]);
res=min(res,query(,,m,hsh[a],hsh[b]));
printf("%d\n",res);continue;
}
if(a==) {val[a]=b;mdf(,,m,hsh[a],b);continue;}
d[fa[a]].push(val[a]);q[fa[a]].push(b);
if(b!=q[fa[a]].top()&&val[a]!=q[fa[a]].top()) {val[a]=b;mdf(,,m,hsh[a],b);continue;}
pop(fa[a]);val[a]=b;mdf(,,m,hsh[a],val[a]);mdf(,,m,hsh[fa[a]],q[fa[a]].top());
}
}

uoj 30 tourists的更多相关文章

  1. 【Codefoces487E/UOJ#30】Tourists Tarjan 点双连通分量 + 树链剖分

    E. Tourists time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard inpu ...

  2. UOJ #30. [CF Round #278] Tourists

    UOJ #30. [CF Round #278] Tourists 题目大意 : 有一张 \(n\) 个点, \(m\) 条边的无向图,每一个点有一个点权 \(a_i\) ,你需要支持两种操作,第一种 ...

  3. UOJ #30【CF Round #278】Tourists

    求从$ x$走到$ y$的路径上可能经过的最小点权,带修改  UOJ #30 $ Solution:$ 如果两个点经过了某个连通分量,一定可以走到这个连通分量的最小值 直接构建圆方树,圆点存原点的点权 ...

  4. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  5. 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)

    [题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...

  6. UOJ #30. 【CF Round #278】Tourists

    Description Cyberland 有 n 座城市,编号从 1 到 n,有 m 条双向道路连接这些城市.第 j 条路连接城市 aj 和 bj.每天,都有成千上万的游客来到 Cyberland ...

  7. [UOJ30/Codeforces Round #278 E]Tourists

    传送门 好毒瘤的一道题QAQ,搞了好几好几天. UOJ上卡在了53个点,CF上过了,懒得优化常数了 刚看时一眼Tarjan搞个强连通分量然后缩点树链剖分xjb搞搞就行了,然后写完了,然后WA了QAQ. ...

  8. 仙人掌&圆方树学习笔记

    仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...

  9. 2018.07.29~30 uoj#170. Picks loves segment tree VIII(线段树)

    传送门 线段树好题. 维护区间取两种最值,区间加,求区间两种历史最值,区间最小值. 自己的写法调了一个晚上+一个上午+一个下午+一个晚上并没有调出来,90" role="prese ...

随机推荐

  1. [HAOI2006]受欢迎的牛(tarjan缩点)

    洛谷传送门 直接tarjan求scc,然后统计出度为0的缩点,如果多余1个就输出0,只有一个就输出这个缩点里的点. ——代码 #include <cstdio> #include < ...

  2. 0c-适配 iOS 11

    参考路径:https://mp.weixin.qq.com/s?__biz=MzA3NTYzODYzMg==&mid=2653579210&idx=1&sn=d5ea8d46c ...

  3. python之-微信开发学习

    微信公众平台技术文档https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1445241432# 注意,最好以python3 运行,中文 ...

  4. webstorm初始化

    1.皮肤设置,重启后Terminal皮肤生效 2.排除目录 2.1全局排除 2.2局部排除 选中文件夹 右击Make Directroy As 选择 Excluded 3.代码自定义 3.1 cons ...

  5. GOF 23种设计模式目录

    经典的gof 23种设计模式,目录大纲查看. 1. Singleton(单例模式) 保证一个类只有一个实例,并提供访问它的全局访问点. 2. Abstract Factory(抽象工厂模式) 提供一个 ...

  6. hdu6212 祖玛(区间DP)

    题意 有一个长度为n的01串,我们可以在某个地方插入一个0或者1,那么如果有连续颜色相同的>=3个,那么这段就会消去,两边的合拢.问将所有01串消去,最少需要插入多少个.(n<=200) ...

  7. 使用Spring Data Redis操作Redis(单机版)

    说明:请注意Spring Data Redis的版本以及Spring的版本!最新版本的Spring Data Redis已经去除Jedis的依赖包,需要自行引入,这个是个坑点.并且会与一些低版本的Sp ...

  8. Linux下使用Curl调用Java的WebService接口

    其实只要是标准的WSDL的SOA接口WebService都可以用. 调用方式: 注意:上面的方式不包括加密或者登录的,其实SOA有一套完整的加密方式. curl -H'Content-Type: te ...

  9. jenkins节约硬盘空间的几个办法

    jenkins真是费硬盘和内存,我们先聊聊硬盘问题怎么解决: 1.不要保留太多的构建记录.发布包数量 相关描述如下:取最先匹配进行执行 2.构建完,删除吧

  10. kvm虚拟化学习笔记(四)之kvm虚拟机日常管理与配置

    KVM虚拟化学习笔记系列文章列表----------------------------------------kvm虚拟化学习笔记(一)之kvm虚拟化环境安装http://koumm.blog.51 ...