题目大意:

一个无向图 每个点有权值 支持两个操作

1 修改某个点的权值

2 查询a-b所有简单路径的点上的最小值

思路:

可以把图变成圆方树 然后树链剖分 维护

对于每个方点使用可删堆维护

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define inf 2139062143
#define ll long long
#define MAXN 200100
#define V g2.to[i]
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;if(ch=='A'||ch=='C') return ch-'A';ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,Q,tot;
struct graph
{
int cnt,fst[MAXN],nxt[MAXN<<],to[MAXN<<];
graph(){memset(fst,,sizeof(fst));cnt=;}
void add(int u,int v) {nxt[++cnt]=fst[u],fst[u]=cnt,to[cnt]=v;}
}g1,g2;
int st[MAXN],dfn[MAXN],low[MAXN],top,stp,val[MAXN];
int hsh[MAXN],dep[MAXN],bl[MAXN],fa[MAXN],sz[MAXN];
priority_queue <int,vector<int>,greater<int> > q[MAXN],d[MAXN];
void tarjan(int x)
{
dfn[x]=low[x]=++stp,st[++top]=x;
sz[x]=;int now=;
for(int i=g1.fst[x];i;i=g1.nxt[i])
if(!dfn[g1.to[i]])
{
tarjan(g1.to[i]);low[x]=min(low[x],low[g1.to[i]]);
if(low[g1.to[i]]<dfn[x]) continue;m++;
do{now=st[top--],sz[m]+=sz[now];g2.add(m,now);}
while(now!=g1.to[i]);
g2.add(x,m);sz[x]+=sz[m];
}
else low[x]=min(low[x],dfn[g1.to[i]]);
}
void dfs(int x)
{
for(int i=g2.fst[x];i;i=g2.nxt[i]) {dep[V]=dep[x]+,fa[V]=x;dfs(V);}
}
void dfs(int x,int anc)
{
hsh[x]=++tot,bl[x]=anc;int hvs=,tmp= x<=n;
for(int i=g2.fst[x];i;i=g2.nxt[i])
{
if(sz[V]>sz[hvs]) hvs=V;
if(!tmp) q[x].push(val[V]);
}
if(!hvs) return ;dfs(hvs,anc);
for(int i=g2.fst[x];i;i=g2.nxt[i])
if(V!=hvs) dfs(V,V);
}
int mn[MAXN<<];
void mdf(int k,int l,int r,int x,int w)
{
if(l==r) {mn[k]=w;return ;}
int mid=(l+r)>>;
if(x<=mid) mdf(k<<,l,mid,x,w);
else mdf(k<<|,mid+,r,x,w);
mn[k]=min(mn[k<<],mn[k<<|]);
}
int query(int k,int l,int r,int a,int b)
{
if(l==a&&r==b) return mn[k];
int mid=(l+r)>>;
if(b<=mid) return query(k<<,l,mid,a,b);
else if(a>mid) return query(k<<|,mid+,r,a,b);
else return min(query(k<<,l,mid,a,mid),query(k<<|,mid+,r,mid+,b));
}
void pop(int x)
{
while(q[x].top()==d[x].top()&&!d[x].empty()) {q[x].pop();d[x].pop();}
}
int main()
{
n=read(),m=read(),Q=read();int a,b,c,res;
for(int i=;i<=n;i++) val[i]=read();
while(m--) {a=read(),b=read();g1.add(a,b);g1.add(b,a);}
m=n;tarjan();dfs();dfs(,);
memset(mn,,sizeof(mn));
for(int i=;i<=m;i++)
if(i>n) mdf(,,m,hsh[i],q[i].top());
else mdf(,,m,hsh[i],val[i]);
while(Q--)
{
c=read(),a=read(),b=read(),res=inf;
if(c^)
{
while(bl[a]!=bl[b])
{
if(dep[bl[a]]<dep[bl[b]]) swap(a,b);
res=min(res,query(,,m,hsh[bl[a]],hsh[a]));
a=fa[bl[a]];
}
if(dep[a]>dep[b]) swap(a,b);
if(a>n) res=min(res,val[fa[a]]);
res=min(res,query(,,m,hsh[a],hsh[b]));
printf("%d\n",res);continue;
}
if(a==) {val[a]=b;mdf(,,m,hsh[a],b);continue;}
d[fa[a]].push(val[a]);q[fa[a]].push(b);
if(b!=q[fa[a]].top()&&val[a]!=q[fa[a]].top()) {val[a]=b;mdf(,,m,hsh[a],b);continue;}
pop(fa[a]);val[a]=b;mdf(,,m,hsh[a],val[a]);mdf(,,m,hsh[fa[a]],q[fa[a]].top());
}
}

uoj 30 tourists的更多相关文章

  1. 【Codefoces487E/UOJ#30】Tourists Tarjan 点双连通分量 + 树链剖分

    E. Tourists time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard inpu ...

  2. UOJ #30. [CF Round #278] Tourists

    UOJ #30. [CF Round #278] Tourists 题目大意 : 有一张 \(n\) 个点, \(m\) 条边的无向图,每一个点有一个点权 \(a_i\) ,你需要支持两种操作,第一种 ...

  3. UOJ #30【CF Round #278】Tourists

    求从$ x$走到$ y$的路径上可能经过的最小点权,带修改  UOJ #30 $ Solution:$ 如果两个点经过了某个连通分量,一定可以走到这个连通分量的最小值 直接构建圆方树,圆点存原点的点权 ...

  4. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  5. 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)

    [题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...

  6. UOJ #30. 【CF Round #278】Tourists

    Description Cyberland 有 n 座城市,编号从 1 到 n,有 m 条双向道路连接这些城市.第 j 条路连接城市 aj 和 bj.每天,都有成千上万的游客来到 Cyberland ...

  7. [UOJ30/Codeforces Round #278 E]Tourists

    传送门 好毒瘤的一道题QAQ,搞了好几好几天. UOJ上卡在了53个点,CF上过了,懒得优化常数了 刚看时一眼Tarjan搞个强连通分量然后缩点树链剖分xjb搞搞就行了,然后写完了,然后WA了QAQ. ...

  8. 仙人掌&圆方树学习笔记

    仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...

  9. 2018.07.29~30 uoj#170. Picks loves segment tree VIII(线段树)

    传送门 线段树好题. 维护区间取两种最值,区间加,求区间两种历史最值,区间最小值. 自己的写法调了一个晚上+一个上午+一个下午+一个晚上并没有调出来,90" role="prese ...

随机推荐

  1. HDU-2647 Reward ,逆拓排。

    Reward 发工资,以前看过这题,做没做忘了(应该是没做). 很明显的拓排.但数据范围这么大,吓得我当时就不敢动手.后来找题解发现还是相当于两层循环(are you kidding me?)当时卡在 ...

  2. NYOJ27水池数目,类似于FZU1008最大黑区域,简单搜索题~~~

    水池数目 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 南阳理工学院校园里有一些小河和一些湖泊,现在,我们把它们通一看成水池,假设有一张我们学校的某处的地图,这个地图上 ...

  3. 约分差束 例题 ZOJ 2770 火烧连营

    题目来源:ZOJ Monthly, October 2006, ZOJ2770题目描述:大家都知道,三国时期,蜀国刘备被吴国大都督陆逊打败了.刘备失败的原因是刘备的错误决策.他把军队分成几十个大营,每 ...

  4. 【BZOJ3295】动态逆序对(BIT套动态加点线段树)

    题意:对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. 给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对 ...

  5. 51nod1040 最大公约数之和

    求$\sum_{i=1}^{n}(i,n)$.n<=1e9. $\sum_{i=1}^{n}(i,n)=\sum_{d|n}d\sum_{i=1}^{n}[(i,n)=d]=\sum_{d|n} ...

  6. 汕头市赛srm1X T3

    给n<=100000个点的树,每个点有一个01串,长度m<=200,串的可以随时01取反,串的每一位对应权Vi,从根节点到某个节点经过决定哪些串取反后取得的最大价值为某个点的权值,求:在这 ...

  7. Mongodb主、副、仲裁节点集群安装

    mongodb 的集群方式主要分为三种Replica Set / Sharding / Master-Slaver ,这里只说明最简单的集群搭建方式(生产环境),如果有多个节点可以此类推或者查看官方文 ...

  8. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 A,D

    A链接:https://www.nowcoder.com/acm/contest/163/A Fruit Ninja is a juicy action game enjoyed by million ...

  9. POJ 2348 Euclid's Game【博弈】

    题目链接: http://poj.org/problem?id=2348 题意: 给定两个数,两个人每次从较大数中减去较小数的倍数,谁先得到0谁获胜,为谁赢? 分析: 令一种可能出现的整数对为(a,b ...

  10. SD/MMC的Commands和Responses的总结

    SD总线通信是基于指令和数据比特流,起始位開始和停止位结束. SD总线通信有三个元素:1.Command:由host发送到卡设备.使用CMD线发送. 2.Response:从card端发送到host端 ...