UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP
题目链接:https://vjudge.net/problem/UVA-11324
题解:
题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u、v,要么u能到达v, 要么v能到达u(u和v也可以互相到达)。
1.可知在一个强连通分量中,任意两个点都可以互相到达。那么我们就对每个强连通分量进行缩点,并记录每个分量的结点个数。
2.缩点之后,就是一张有向无环图了,这时就转化为求:从有向无环图中找出一条权值之和最大的路径。简单的记忆化搜索即可实现。
前向星建图 + 前向星重建:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXM = 5e4+;
const int MAXN = 1e3+; struct Edge
{
int to, next;
}edge[MAXM], edge0[MAXM]; //edge为初始图, edge0为重建图
int tot, head[MAXN], tot0, head0[MAXN]; int Index, dfn[MAXN], low[MAXN];
int top, Stack[MAXN], instack[MAXN];
int scc, belong[MAXN], num[MAXN];
int dp[MAXN]; void addedge(int u, int v, Edge edge[], int head[], int &tot)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++Index;
Stack[top++] = u;
instack[u] = true;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(instack[v])
low[u] = min(low[u], dfn[v]);
} if(dfn[u]==low[u])
{
int v;
scc++;
do
{
v = Stack[--top];
instack[v] = false;
belong[v] = scc;
num[scc]++;
}while(v!=u);
}
} int dfs(int u)
{
if(dp[u]!=-) return dp[u];
dp[u] = num[u];
for(int i = head0[u]; i!=-; i = edge0[i].next)
{
int v = edge0[i].to;
dp[u] = max(dp[u], num[u]+dfs(v));
}
return dp[u];
} void init()
{
tot = tot0 = ;
memset(head, -, sizeof(head));
memset(head0, -, sizeof(head0)); Index = top = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(instack, , sizeof(instack)); scc = ;
memset(num, , sizeof(num));
memset(dp, -, sizeof(dp));
} int main()
{
int n, m, T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
init();
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v, edge, head, tot);
} for(int i = ; i<=n; i++)
if(!dfn[i])
Tarjan(i); for(int u = ; u<=n; u++) //重建建图
for(int i = head[u]; i!=-; i = edge[i].next)
{
int tmpu = belong[u];
int tmpv = belong[edge[i].to];
if(tmpu!=tmpv)
addedge(tmpu, tmpv, edge0, head0, tot0);
} int ans = ;
for(int i = ; i<=scc; i++)
if(dp[i]==-)
ans = max(ans, dfs(i)); printf("%d\n", ans);
}
}
前向星建图 + vector重建:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const int MAXM = 5e4+;
const int MAXN = 1e3+; struct Edge
{
int to, next;
}edge[MAXM];
int tot, head[MAXN];
vector<int>g[MAXN]; int Index, dfn[MAXN], low[MAXN];
int top, Stack[MAXN], instack[MAXN];
int scc, belong[MAXN], num[MAXN];
int dp[MAXN]; void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++Index;
Stack[top++] = u;
instack[u] = true;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(instack[v])
low[u] = min(low[u], dfn[v]);
} if(dfn[u]==low[u])
{
int v;
scc++;
do
{
v = Stack[--top];
instack[v] = false;
belong[v] = scc;
num[scc]++;
}while(v!=u);
}
} int dfs(int u)
{
if(dp[u]!=-) return dp[u];
dp[u] = num[u];
for(int i = ; i<g[u].size(); i++)
{
int v = g[u][i];
dp[u] = max(dp[u], num[u]+dfs(v));
}
return dp[u];
} void init(int n)
{
tot = ;
memset(head, -, sizeof(head)); Index = top = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(instack, , sizeof(instack)); scc = ;
memset(num, , sizeof(num));
memset(dp, -, sizeof(dp));
for(int i = ; i<=n; i++)
g[i].clear();
} int main()
{
int n, m, T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
init(n);
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
} for(int i = ; i<=n; i++)
if(!dfn[i])
Tarjan(i); for(int u = ; u<=n; u++)
for(int i = head[u]; i!=-; i = edge[i].next)
{
int tmpu = belong[u];
int tmpv = belong[edge[i].to];
if(tmpu!=tmpv)
g[tmpu].push_back(tmpv);
} int ans = ;
for(int i = ; i<=scc; i++)
if(dp[i]==-)
ans = max(ans, dfs(i)); printf("%d\n", ans);
}
}
vector建图 + vector重建:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const int MAXN = 1e3+; vector<int>G[MAXN], g[MAXN]; int Index, dfn[MAXN], low[MAXN];
int top, Stack[MAXN], instack[MAXN];
int scc, belong[MAXN], num[MAXN];
int dp[MAXN]; void Tarjan(int u)
{
dfn[u] = low[u] = ++Index;
Stack[top++] = u;
instack[u] = true;
for(int i = ; i<G[u].size(); i++)
{
int v = G[u][i];
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(instack[v])
low[u] = min(low[u], dfn[v]);
} if(dfn[u]==low[u])
{
int v;
scc++;
do
{
v = Stack[--top];
instack[v] = false;
belong[v] = scc;
num[scc]++;
}while(v!=u);
}
} int dfs(int u)
{
if(dp[u]!=-) return dp[u];
dp[u] = num[u];
for(int i = ; i<g[u].size(); i++)
{
int v = g[u][i];
dp[u] = max(dp[u], num[u]+dfs(v));
}
return dp[u];
} void init(int n)
{
Index = top = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(instack, , sizeof(instack)); scc = ;
memset(num, , sizeof(num));
memset(dp, -, sizeof(dp));
for(int i = ; i<=n; i++)
{
G[i].clear();
g[i].clear();
}
} int main()
{
int n, m, T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
init(n);
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
} for(int i = ; i<=n; i++)
if(!dfn[i])
Tarjan(i); for(int u = ; u<=n; u++)
for(int i = ; i<G[u].size(); i++)
{
int tmpu = belong[u];
int tmpv = belong[G[u][i]];
if(tmpu!=tmpv)
g[tmpu].push_back(tmpv);
} int ans = ;
for(int i = ; i<=scc; i++)
if(dp[i]==-)
ans = max(ans, dfs(i)); printf("%d\n", ans);
}
}
UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP的更多相关文章
- UVA11324 The Largest Clique[强连通分量 缩点 DP]
UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)
题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...
- UVA11324 The Largest Clique (强连通缩点+DP最长路)
<题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...
- uva11324 The Largest Clique --- 强连通+dp
给一个有向图G,求一个子图要求当中随意两点至少有一边可达. 问这个子图中最多含多少个顶点. 首先找SCC缩点建图.每一个点的权值就是该点包括点的个数. 要求当中随意两点可达,实际上全部边仅仅能同方向, ...
- UVa 11324 The Largest Clique (强连通分量+DP)
题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...
- BZOJ 1179 Atm(强连通分量缩点+DP)
题目说可以通过一条边多次,且点权是非负的,所以如果走到图中的一个强连通分量,那么一定可以拿完这个强连通分量上的money. 所以缩点已经很明显了.缩完点之后图就是一个DAG,对于DAG可以用DP来求出 ...
- POJ3160 Father Christmas flymouse[强连通分量 缩点 DP]
Father Christmas flymouse Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 3241 Accep ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
随机推荐
- 2. TypeScript笔记
1. 安装node.js之后 需要测试npm命令 2.命令正常安装TypeScript 3.安装Egret egret 命令
- 【Codeforces 140A】New Year Table
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 算出来每个盘子要占用多少角度. 然后乘n看看是不是小于等于2π就好 (精度最好定在1e-7) [代码] #include <bits/s ...
- Pychorm提示Unresolved reference 导入模块报错
最近使用Pychorm编写Python时,每次要引入自定义模块,就会报错,提示“Unresolved reference” Unresolved reference 'LoginClass' more ...
- Oracle中有关数学表达式的语法
Oracle中有关数学表达式的语法 三角函数 SIN ASIN SINHCOS ACOS COSHTA ...
- [HDU4348]To the moon(主席树)
传送门 对于这个题,显然要打lazy标记了,但是lazy标记pushdown的时候肯定会增加一大堆节点,然后就MLE了.(题解这么说的,我其实不会pushdown) 所以,就换另一种方式,把标记直接打 ...
- [NOIP2000] 提高组 洛谷P1023 税收与补贴问题
题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最高价位后,销量以某固定数值递 ...
- iOS 如何查看崩溃日志
参考网址: [转载]https://www.jianshu.com/p/4de55d73c82b [转载]https://blog.csdn.net/qq_26544491/article/detai ...
- C. Day at the Beach---cf559
http://codeforces.com/problemset/problem/599/C 题目大意: 有n个城堡的高度 让你最多分成几个块 每个块排过序之后 整体是按照升序来的 分析: ...
- 【TFS 2017 CI/CD系列 - 03】-- Release篇
为Project创建Release必须要先创建Build,若还没有Build definition请看上一篇文章:[TFS 2017 CI/CD系列 - 02]-- Build篇 一.创建Releas ...
- 使用datatables实现后台分页功能,减轻前端渲染压力
注意不同版本,参数名字及参数内容存在差异,具体可以参考https://datatables.net/upgrade/1.10-convert#Options 控制页面显示的参数:https://dat ...