bzoj 3527: [Zjoi2014]力【FFT】
大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \)
首先下标从0开始存,n--
\]
\]
设
\]
\]
\]
\]
故
\]
先推ai
!注意j==i的情况下g函数为0不影响结果,所以方便起见把大于小于都换成了大于等于小于等于
\]
\]
\]
于是卷积*1get
再推bi
\]
\]
然后用j+i替换j
\]
\]
\]
然后用n-i-j替换j
\]
\]
然后发现这样转化一下
\]
\]
\]
设
\]
\]
设
\]
\]
于是卷积*2get
然后直接上FFT即可
!!!对于g函数,应该是g[i]=1.0/i/i !!g[i]=1.0/(i*i)会炸精度!
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=1000005;
int n,lm,bt,re[N];
struct cd
{
double r,i;
cd(double R=0,double I=0)
{
r=R,i=I;
}
cd operator + (cd &a) const
{
return cd(r+a.r,i+a.i);
}
cd operator - (cd &a) const
{
return cd(r-a.r,i-a.i);
}
cd operator * (cd &a) const
{
return cd(r*a.r-i*a.i,r*a.i+i*a.r);
}
}f[N],f1[N],g[N],a[N],b[N];
void dft(cd a[],int f)
{
for(int i=1;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=2;i<=lm;i<<=1)
{
cd wi=cd(cos(2.0*M_PI/i),f*sin(2.0*M_PI/i));
for(int k=0;k<lm;k+=i)
{
cd w=cd(1,0),x,y;
for(int j=0;j<(i>>1);j++)
{
x=a[j+k];
y=a[j+k+(i>>1)]*w;
a[j+k]=x+y;
a[j+k+(i>>1)]=x-y;
w=w*wi;
}
}
}
if(f==-1)
for(int i=0;i<lm;i++)
a[i].r/=lm;
}
int main()
{
scanf("%d",&n);
n--;
for(int i=0;i<=n;i++)
{
scanf("%lf",&f[i].r);
f1[n-i].r=f[i].r;
}
for(int i=1;i<=n;i++)
g[i].r=1.0/i/i;
for(int i=0;;i++)
if((1<<i)>2*n)
{
bt=i;
lm=(1<<i);
break;
}
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(f,1);
dft(f1,1);
dft(g,1);
for(int i=0;i<lm;i++)
{
a[i]=f[i]*g[i];
b[i]=f1[i]*g[i];
}
dft(a,-1);
dft(b,-1);
for(int i=0;i<=n;i++)
printf("%.3f\n",a[i].r-b[n-i].r);
return 0;
}
bzoj 3527: [Zjoi2014]力【FFT】的更多相关文章
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- ●BZOJ 3527 [Zjoi2014]力
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...
- BZOJ 3527: [ZJOI2014]力(FFT)
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...
- 数学(FFT):BZOJ 3527 [Zjoi2014]力
题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...
- bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT
题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...
随机推荐
- DTrace scripts for Mac OS X
http://www.cnblogs.com/Proteas/p/3727297.html http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtra ...
- Org-mode五分钟教程ZZZ
Table of Contents 1 源起 2 简介 2.1 获取 org-mode 2.2 安装 3 基础用法 3.1 创建一个新文件 3.2 简单的任务列表 3.3 使用标题组织一篇文章 3.4 ...
- Meteor核心API
在本教程中,我们将介绍学习Meteor核心API. 如果你想限制代码只在服务器或客户端可以使用下面的代码运行 - meteorApp.js if (Meteor.isClient) { // Code ...
- 2003-07-16T01:24:32Z这是什么时间格式
这是标准的XML Schema的"日期型数据格式”. T是代表后面跟着“时间”.Z代表0时区,或者叫UTC统一时间. 世界的每个地区都有自己的本地时间,在Internet及无线电通信时,时间 ...
- 运行mapreduce - java.lang.InterruptedException
错误日志: 2018-11-19 05:23:51,686 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit> ...
- App中显示html网页
在现在的移动开发中,越来越多的web元素增加到了app里面,hybrid app可以综合native app 和 web app的长处,可以通过webView实现 htmllayout.xml: &l ...
- activiti自己定义流程之自己定义表单(一):环境配置
先补充说一下自己定义流程整个的思路,自己定义流程的目的就是为了让一套代码解决多种业务流程.比方请假单.报销单.採购单.协作单等等.用户自己来设计流程图. 这里要涉及到这样几个基本问题,一是不同的业务需 ...
- 【Mongodb教程 第一课 补加课】 Failed to connect to 127.0.0.1:27017, reason: errno:10061 由于目标计算机积极拒绝,无法连接
1:启动MongoDB 2014-07-25T11:00:48.634+0800 warning: Failed to connect to 127.0.0.1:27017, reason: errn ...
- maven 项目 spring mvc + jdbc 配置文件
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- IOS开发基础之—MD5加密算法【转】
原文地址:http://blog.csdn.net/pjk1129/article/details/6855024 #import <CommonCrypto/CommonDigest.h> ...