传送门

高斯消元还是一如既往的难打……板子都背不来……Kelin大佬太强啦

不知道大佬们是怎么发现可以按位考虑贡献,求出每一位是$1$的概率

然后设$f[u]$表示$u->n$的路径上这一位为$1$的概率,然后设$deg[u]$表示$u$的出度

那么$1-f[u]$就是路径上这一位为$0$的概率

然后瞎推可以得到$$f[u]=\frac1{dg[u]}(\sum_{w(u,v)=0}f[v]+\sum_{w(u,v)=1}1-f[v])$$
$$ dg[u]f[u]=\sum_{w(u,v)=0}f[v]+\sum_{w(u,v)=1}1-f[v]$$

然后移个项$$dg[u]f[u]-\sum_{w(u,v)=0}f[v]+\sum_{w(u,v)=1}f[v]=\sum_{w(u,v)=1}1$$

高斯消元带进去乱搞

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while((ch=getc())>''||ch<'')
(ch=='-')&&(flag=true);
for(res=num;(ch=getc())<=''&&ch>='';res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=2e4+;const double eps=1e-;
int head[N],Next[M],ver[M],edge[M],tot;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
}
int n,m,mx,dg[N];double res,ans[N],f[N][N];
void build(int x){
f[n][n]=;
for(int u=;u<n;++u){
f[u][u]=dg[u];
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(edge[i]&x) ++f[u][v],++f[u][n+];
else --f[u][v];
}
}
}
void Gauss(){
for(int i=;i<=n;++i){
int k=i;
for(int j=i+;j<=n;++j)
if(fabs(f[k][i])<fabs(f[j][i])) k=j;
if(k!=i) swap(f[i],f[k]);
double div=f[i][i];
for(int j=i;j<=n+;++j) f[i][j]/=div;
for(int j=i+;j<=n;++j){
double t=f[j][i];
for(int k=i;k<=n+;++k)
f[j][k]-=t*f[i][k];
}
}
ans[n]=f[n][n+]/f[n][n];
for(int i=n-;i;--i){
for(int j=i+;j<=n;++j)
f[i][n+]-=f[i][j]*ans[j];
ans[i]=f[i][n+]/f[i][i];
}
for(int i=;i<=n;++i) for(int j=;j<=n+;++j) f[i][j]=;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=,u,v,e;i<=m;++i){
u=read(),v=read(),e=read();
add(u,v,e),++dg[u];
if(u!=v) add(v,u,e),++dg[v];
cmax(mx,e);
}
for(int i=;i<=mx;i<<=)
build(i),Gauss(),res+=ans[]*i;
printf("%.3lf\n",res);
return ;
}

洛谷P3211 [HNOI2011]XOR和路径(期望dp+高斯消元)的更多相关文章

  1. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  2. 洛谷 P5249 - [LnOI2019]加特林轮盘赌(期望 dp+高斯消元)

    题面传送门 期望真 nm 有意思,所以蒟蒻又来颓期望辣 先特判掉 \(P_0=0\) 的情况,下面假设 \(P_0\ne 0\). 首先注意到我们每次将加特林对准一个人,如果这个人被毙掉了,那么相当于 ...

  3. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  4. 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)

    题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...

  5. 【洛谷3232】[HNOI2013] 游走(贪心+高斯消元)

    点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期 ...

  6. ZJUT 1423 地下迷宫(期望DP&高斯消元)

    地下迷宫 Time Limit:1000MS  Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走 ...

  7. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  8. HDU4418 Time travel(期望dp 高斯消元)

    题意 题目链接 Sol mdzz这题真的太恶心了.. 首先不难看出这就是个高斯消元解方程的板子题 \(f[x] = \sum_{i = 1}^n f[to(x + i)] * p[i] + ave\) ...

  9. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

随机推荐

  1. 检查nginx配置,重载配置以及重启的方法

    原文  http://blogread.cn/it/article/4549?f=hot1 几个常用的nginx命令 Nginx 安装后只有一个程序文件,本身并不提供各种管理程序,它是使用参数和系统信 ...

  2. MySQL基础笔记(二) 完整性约束

    我们知道,一种数据模型必须包含三个基本的部分: 构造机制(数据结构):主要描述数据的类型.内容.性质以及数据间的联系等. 运算机制(数据操作):主要描述在相应的数据结构上的操作类型和操作方式. 约束机 ...

  3. 异或巧用:Single Number

    异或巧用:Single Number 今天刷leetcode,碰到了到题Single Number.认为解答非常巧妙,故记之... 题目: Given an array of integers, ev ...

  4. Socketclient与服务端

    package test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamR ...

  5. 分享:Mac与Phy组成原理的简单分析

    原文链接:http://blog.chinaunix.net/uid-20528014-id-3050217.html 1.General 下图是网口结构简图.网口由CPU.MAC和PHY三部分组成. ...

  6. QtQuick桌面应用开发指导 1)关于教程 2)原型和设计 3)实现UI和功能_A

    Release1.0 http://qt-project.org/wiki/developer-guides Qt Quick Application Developer Guide for Desk ...

  7. linux系统编程:线程同步-相互排斥量(mutex)

    线程同步-相互排斥量(mutex) 线程同步 多个线程同一时候訪问共享数据时可能会冲突,于是须要实现线程同步. 一个线程冲突的演示样例 #include <stdio.h> #includ ...

  8. Codeforces Little Dima and Equation 数学题解

    B. Little Dima and Equation time limit per test 1 second memory limit per test 256 megabytes input s ...

  9. is和==的区别,小数据池,编码

    1   is  和  == 的区别 1>    id( )表示我们可以通过它来查到在内存中的地址 s = "alex" lst = [1,2, 4] lst = [1, 2, ...

  10. JS Debug

    任何一个编程者都少不了要去调试代码,不管你是高手还是菜鸟,调试程序都是一项必不可少的工作.一般来说调试程序是在编写代码之后或测试期修改Bug 时进行的,往往在调试代码期间更加能够体现出编程者的水平高低 ...