旅行商问题——状态压缩DP
问题简介
有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点。问销售员应如何经过这些城市是他所走的路线最短?
用图论的语言描述就是:给定一个权值为正数的赋权完全图,求各边权值和最小的哈密尔顿回路。
这个问题就是著名的旅行商问题(TSP,Traveling Salesman Problem),TSP问题是NP问题,没有已知的多项式时间的高效算法可以解决之一问题。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一,许多优化方法都用它作为一个基准,例如动态规划,最邻近法,插入法,模拟退火算法,遗传算法,神经网络算法等。
经典应用实例
印制电路板转孔
在一块电路板上打成百上千个孔,转头在这些孔之间移动,要求移动的距离之和最小。把这个问题转化为TSP,孔相当于城市.孔到孔之问的移动时间就是距离,转头的移动距离之和就是一次巡回的距离
生产安排
假设要在同一组机器上制造n种不同的产品,生产是周期性进行的,即在每一个生产周期这n种产品都要被制造。要生产这些产品有两种开销,一种是制造第i种产品时所耗费的资金(1≤i≤n),称为生产成本,另一种是这些机器由制造第i种产品变到制造第j种产品时所耗费的开支cij称为转换成本。显然,生产成本与生产顺序无关。于是,我们希望找到一种制造这些产品的顺序,使得制造这n种产品的转换成本和为最小。由于生产是周期进行的,因此在开始下一周期生产时也要开支转换成本,它等于由最后一种产品变到制造第一种产品的转换成本。于是,可以把这个问题看成是一个具有n个结点,边成本为cij图的货郎担问题。
代码实现
给定一个n个顶点组成的带权有向图的距离矩阵d(i,j)(INF表示没有边)。要求从顶点0出发,经过每个顶点恰好一次后再回到顶点0.问所经过的边的总权重的最少值是多少?(2≤n≤15),(0≤d(i,j)≤1000).
分析:
虽然TSP是NP困难的,不过在程序设计竞赛中还是有可能出现这种范围较小的题目。
所有可能的路线共有(n-1)! 种,这是一个非常大的值,即使在本题n已经很小,仍无法试遍每一种情况。对于这个问题,我们可以用DP来解决。
假设现在已经访问过的顶点的集合(起点0当作还未访问过的顶点)为S,当前所在的顶点为v,用d[S][v]表示从顶点v出发访问剩余的所有顶点,最终回到顶点0的路径的权重之和最小的路径。
已经访问过的集合S如何表示?由于S是有基数最大为n的集合,所以可以用n为二进制来表示集合,把每一个元素的选取与否对应到一个二进制位中,从而状态压缩成一个整数,像这种针对集合的DP我们一般叫做状态压缩DP。
时间复杂度O(2nn2)(2n * n种状态,每种状态有n种选择)。
代码:
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; const int INF = 0x3f3f3f3f;
const int maxn = ;
int n,m,G[maxn][maxn];
int d[ << maxn][maxn]; //记忆化搜索使用的数组 //已经访问过的节点集合为S,当前位置为v
//用d[S][v]从v出发访问剩余的所有顶点,最终回到顶点0的路径的权重总和的最小值
int dp(int S, int v)
{
int& ans = d[S][v];
if (ans >= ) return ans; //已经求出来了,直接返回
if (S == ( << n) - && v == ) return ans = ; //已经访问过所有节点并回到0号点
ans = INF;
for (int u = ; u < n; u++) if ((!((S >> u) & )) && G[v][u])
ans = min(ans, dp(S | ( << u), u) + G[v][u]);
return ans;
} void solve()
{
//memset(G, INF, sizeof(G));
memset(d, -, sizeof(d));
printf("%d\n", dp(, ));
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n,&m);
for (int i = ; i < m; i++)
{
int u, v,w;
scanf("%d%d%d", &u, &v,&w);
G[u][v] = w;
}
solve();
}
return ;
}
对于不是整数的情况,很多时候很难确定一个适合的递推顺序,因此使用记忆化搜索可以避免这个问题。不过在这个问题中,对于任意两个整数i,j,如果它们对应的集合满足S(i) ⊆ S(j),就有i ≤ j。所以这题还可以用循环求出答案。
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; const int INF = 0x3f3f3f3f;
const int maxn = ;
int n, m, G[maxn][maxn];
int d[ << maxn][maxn]; //记忆化搜索使用的数组 void solve()
{
//用足够大的值初始化数组
for (int S = ; S < ( << n); S++)
fill(d[S], d[S] + n, INF);
d[( << n) - ][] = ; //根据递推式依次计算
for (int S = ( << n) - ; S >= ; S--)
for (int v = ; v < n; v++)
for (int u = ; u < n; u++)
if ((!(S >> u & )) && G[v][u])
d[S][v] = min(d[S][v], d[S | << u][u] + G[v][u]);
printf("%d\n", d[][]);
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &m);
for (int i = ; i < m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
G[u][v] = w;
}
solve();
}
return ;
}
参考链接:
https://baike.baidu.com/item/NP完全问题/4934286?fr=aladdin
https://baike.baidu.com/item/旅行商问题/7737042?fr=aladdin
https://baike.baidu.com/item/%E8%B4%A7%E9%83%8E%E6%8B%85%E9%97%AE%E9%A2%98
旅行商问题——状态压缩DP的更多相关文章
- TSP 旅行商问题(状态压缩dp)
题意:有n个城市,有p条单向路径,连通n个城市,旅行商从0城市开始旅行,那么旅行完所有城市再次回到城市0至少需要旅行多长的路程. 思路:n较小的情况下可以使用状态压缩dp,设集合S代表还未经过的城市的 ...
- 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- jsp 验证码
<%@page import="java.awt.Graphics2D"%> <%@page import="java.util.Random" ...
- windows server安装zabbix-agent
1.准备安装包: 下载链接:https://www.zabbix.com/downloads/3.4.0/zabbix_agents_3.4.0.win.zip 2.在C盘下创建一个zabbix目录, ...
- linux中vfork对打开文件的处理
vfork和fork fork()函数是拷贝一个父进程的副本,拥有独立的代码段 数据段 堆栈空间 然而vfork是共享父亲进程的代码以及代码段 vfork是可以根据需要复制父进程空间,这样很大程度的提 ...
- hdoj2796
题意: 1.在每一堆里顶部的coin的size必须大于这一堆其他的coin: 2.在每一堆里顶部的coin的size必须大于前面堆的顶部的coin: 3.在每一堆里顶部的coin的num必须大于前面堆 ...
- python __builtins__ license类 (41)
41.'license', 许可证,执照 class _Printer(builtins.object) | interactive prompt objects for printing the l ...
- python __builtins__ float类 (25)
25.'float', 用于将整数和字符串转换成浮点数. class float(object) | float(x) -> floating point number | | Convert ...
- bzoj 2806: [Ctsc2012]Cheat【广义SAM+二分+dp+单调队列】
把模板串建一个广义SAM 然后在线查询,每次在SAM上预处理出一个a[i]表示i位置向前最多能匹配多长的模板串 二分答案L,dp判断,设f[i]为·~i有几个匹配,转移显然是f[i]=max{f[i- ...
- python 之 random 模块、 shutil 模块、shelve模块、 xml模块
6.12 random 模块 print(random.random()) (0,1)----float 大于0且小于1之间的小数 print(random.randint(1,3)) [1,3] 大 ...
- Luogu P3393 逃离僵尸岛【最短路】By cellur925
题目传送门 题目大意:(其实概括出来也就基本做完了hh)在一张有$n$个点,$m$条边的无向图上,有$k$个点是不能经过的,而与之距离不超过$s$的点,到他们会花费$Q$元,到其他点会花费$p$元,求 ...
- Centos 6.8安装 SVN
SVN SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS.互联网上很多版本控制服务已从CVS迁移到Subver ...