In this example:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {}

let object: MyClass = MyClass()

object.testFuncA()

static dispatch is used. The concrete type of object is known at compile time; it's MyClass. Swift can then see that it conforms to MyProtocol without providing its own implementation of testFuncA(), so it can dispatch straight to the extension method.

So to answer your individual questions:

MyClassMyClassNo – a Swift class v-table only holds methods defined in the body of the class declaration. That is to say:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

// No entry in MyClass' Swift v-table.

// (but an entry in MyClass' protocol witness table for conformance to MyProtocol)

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {

// An entry in MyClass' Swift v-table.

func foo() {}

}

extension MyClass {

// No entry in MyClass' Swift v-table (this is why you can't override

// extension methods without using Obj-C message dispatch).

func bar() {}

}

There are no existential containers in the code:

let object: MyClass = MyClass()

object.testFuncA()

Existential containers are used for protocol-typed instances, such as your first example:

let object: MyProtocol = MyClass()

object.testFuncA()

The MyClass instance is boxed in an existential container with a protocol witness table that maps calls to testFuncA() to the extension method (now we're dealing with dynamic dispatch).

A nice way to see all of the above in action is by taking a look at the SIL generated by the compiler; which is a fairly high-level intermediate representation of the generated code (but low-level enough to see what kind of dispatch mechanisms are in play).

You can do so by running the following (note it's best to first remove print statements from your program, as they inflate the size of the SIL generated considerably):

swiftc -emit-sil main.swift | xcrun swift-demangle > main.silgen

Let's take a look at the SIL for the first example in this answer. Here's the main function, which is the entry-point of the program:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyClass       // id: %2

%3 = global_addr @main.object : main.MyClass : $*MyClass // users: %9, %7

// function_ref MyClass.__allocating_init()

%4 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %6

%5 = metatype $@thick MyClass.Type              // user: %6

%6 = apply %4(%5) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

store %6 to %3 : $*MyClass                      // id: %7

// Get a reference to the extension method and call it (static dispatch).

// function_ref MyProtocol.testFuncA()

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

%9 = load %3 : $*MyClass                        // user: %11

%10 = alloc_stack $MyClass                      // users: %11, %13, %12

store %9 to %10 : $*MyClass                     // id: %11

%12 = apply %8<MyClass>(%10) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

dealloc_stack %10 : $*MyClass                   // id: %13

%14 = integer_literal $Builtin.Int32, 0         // user: %15

%15 = struct $Int32 (%14 : $Builtin.Int32)      // user: %16

return %15 : $Int32                             // id: %16

} // end sil function 'main'

The bit that we're interested in here is this line:

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

The function_ref instruction gets a reference to a function known at compile-time. You can see that it's getting a reference to the function @(extension in main):main.MyProtocol.testFuncA() -> (), which is the method in the protocol extension. Thus Swift is using static dispatch.

Let's now take a look at what happens when we make the call like this:

let object: MyProtocol = MyClass()

object.testFuncA()

The main function now looks like this:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyProtocol  // id: %2

%3 = global_addr @main.object : main.MyProtocol : $*MyProtocol // users: %9, %4

// Create an opaque existential container and get its address (%4).

%4 = init_existential_addr %3 : $*MyProtocol, $MyClass // user: %8

// function_ref MyClass.__allocating_init()

%5 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

%6 = metatype $@thick MyClass.Type              // user: %7

%7 = apply %5(%6) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %8

// Store the MyClass instance in the existential container.

store %7 to %4 : $*MyClass                      // id: %8

// Open the existential container to get a pointer to the MyClass instance.

%9 = open_existential_addr immutable_access %3 : $*MyProtocol to $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol // users: %11, %11, %10

// Dynamically lookup the function to call for the testFuncA requirement.

%10 = witness_method $@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol, #MyProtocol.testFuncA!1 : <Self where Self : MyProtocol> (Self) -> () -> (), %9 : $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9; user: %11

// Call the function we looked-up for the testFuncA requirement.

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

%12 = integer_literal $Builtin.Int32, 0         // user: %13

%13 = struct $Int32 (%12 : $Builtin.Int32)      // user: %14

return %13 : $Int32                             // id: %14

} // end sil function 'main'

There are some key differences here.

An (opaque) existential container is created with init_existential_addr, and the MyClass instance is stored into it (store %7 to %4).

The existential container is then opened with open_existential_addr, which gets a pointer to the instance stored (the MyClass instance).

Then, witness_method is used in order to lookup the function to call for the protocol requirement MyProtocol.testFuncA for the MyClass instance. This will check the protocol witness table for MyClass's conformance, which is listed at the bottom of the generated SIL:

sil_witness_table hidden MyClass: MyProtocol module main {

method #MyProtocol.testFuncA!1: <Self where Self : MyProtocol> (Self) -> () -> () : @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main // protocol witness for MyProtocol.testFuncA() in conformance MyClass

}

This lists the function @protocol witness for main.MyProtocol.testFuncA() -> (). We can check the implementation of this function:

// protocol witness for MyProtocol.testFuncA() in conformance MyClass

sil private [transparent] [thunk] @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main : $@convention(witness_method) (@in_guaranteed MyClass) -> () {

// %0                                             // user: %2

bb0(%0 : $*MyClass):

%1 = alloc_stack $MyClass                       // users: %7, %6, %4, %2

copy_addr %0 to [initialization] %1 : $*MyClass // id: %2

// Get a reference to the extension method and call it.

// function_ref MyProtocol.testFuncA()

%3 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %4

%4 = apply %3<MyClass>(%1) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

%5 = tuple ()                                   // user: %8

destroy_addr %1 : $*MyClass                     // id: %6

dealloc_stack %1 : $*MyClass                    // id: %7

return %5 : $()                                 // id: %8

} // end sil function 'protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main'

and sure enough, its getting a function_ref to the extension method, and calling that function.

The looked-up witness function is then called after the witness_method lookup with the line:

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

So, we can conclude that dynamic protocol dispatch is used here, based on the use of witness_method.

We just breezed though quite a lot of technical details here; feel free to work through the SIL line-by-line, using the documentation to find out what each instruction does. I'm happy to clarify anything you may be unsure about.

https://stackoverflow.com/questions/48422621/which-dispatch-method-would-be-used-in-swift

Which dispatch method would be used in Swift?-Existential Container的更多相关文章

  1. Which dispatch method would be used in Swift?

    In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...

  2. 通过设置swift中container的ACL提供匿名访问及用户授权读取服务

    在上层使用swift提供的云存储服务的过程中,提出了无需验证的使用需求. 在参考了:http://my.oschina.net/alanlqc/blog/160196(curl命令操作) 官方文档: ...

  3. swift 该死的派发机制--待完成

    swift 该死的派发机制 final static oc类型 多态类型 静态类型 动态函数  静态函数 nsobject: 1.缺省不再使用oc的动态派发机制: 2.可以使用nsobject暴露出来 ...

  4. 【基本功】深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  5. 深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  6. Swift 性能相关

    起初的疑问源自于「在 Swift 中的, Struct:Protocol 比 抽象类 好在哪里?」.但是找来找去都是 Swift 性能相关的东西.整理了点笔记,供大家可以参考一下. 一些疑问 在正题开 ...

  7. Swift进阶之内存模型和方法调度

    前言 Apple今年推出了Swift3.0,较2.3来说,3.0是一次重大的升级.关于这次更新,在这里都可以找到,最主要的还是提高了Swift的性能,优化了Swift API的设计(命名)规范. 前段 ...

  8. [转] How to dispatch a Redux action with a timeout?

    How to dispatch a Redux action with a timeout? Q I have an action that updates notification state of ...

  9. Using Swift with Cocoa and Objective-C(Swift 2.0版):开始--基础设置-备

    这是一个正在研发的API或技术的概要文件,苹果公司提供这些信息主要是为了帮助你通过苹果产品使用这些技术或者编程接口而做好计划,该信息有可能会在未来发生改变,本文当中提到的软件应该以最终发布的操作系统测 ...

随机推荐

  1. CRM 2011 开发中遇到的问题小结

    1.将Retrive 方法改成 RetrieveMultiple时 如果指定的ColumnSet 没有指定主键(entiryname+id),要显示增加实体的主键.否则在调用 Retrieve方法时返 ...

  2. eclipse 显示行数

    在左侧添加断点的 地方右击 选择 Show Line Numbers

  3. sphinx测试数据生成

    import json from random import sample, randint from uuid import uuid4 def gen_random_words(): with o ...

  4. C++ 多线程与并发

    1. 非原子操作 这些非原子操作在被编译为汇编代码后不止一条指令. 自加.自减少: new 关键字: 申请内存: 调用构造函数: pInst = new T; // 对于这样一个赋值语句,更是包含了如 ...

  5. 基于 IOCP 的通用异步 Windows Socket TCP 高性能服务端组件的设计与实现

    设计概述 服务端通信组件的设计是一项非常严谨的工作,其中性能.伸缩性和稳定性是必须考虑的硬性质量指标,若要把组件设计为通用组件提供给多种已知或未知的上层应用使用,则设计的难度更会大大增加,通用性.可用 ...

  6. Macaca框架

    收藏 http://www.cnblogs.com/jinjiangongzuoshi/p/6537795.html

  7. 希尔排序(Shellsort)

    首先,Shell是发明这个算法的人名,不是这个算法的思想或者特点. 希尔排序,也称为增量递减排序.基本思路,是把原来的序列,等效视为一个矩阵的形式.矩阵的列数,也称为宽度或者增量,记为w. 假设数组A ...

  8. bzoj 1499: [NOI2005]瑰丽华尔兹【dp+单调队列】

    设f[a][i][j]为第a段时间结束时在(i,j)位置的最长滑行距离,转移很好想,就是分四个方向讨论,然后枚举这段时间的滑行长度取个max即可 但是这样是O(n^4)的,考虑优化 发现同一行或列,取 ...

  9. poj 2187【旋转卡壳模板】

    求平面最远点对 #include<iostream> #include<cstdio> #include<algorithm> #include<cmath& ...

  10. bzoj 2142: 礼物【中国剩余定理+组合数学】

    参考:http://blog.csdn.net/wzq_qwq/article/details/46709471 首先推组合数,设sum为每个人礼物数的和,那么答案为 \[ ( C_{n}^{sum} ...