首先第一眼是一个倍增套线性基,但是$O(Qlog^2Vlog^N)=10^{10}$的复杂度...

即使是st表也只是变成了$O(Nlog^2Vlog^N)$啊

考虑点分治,相对于倍增显著减少了线性基合并(一个往另一个里暴力插)这一O(log^2V)的过程

就是在分治到一个询问的两端点分立于两个子树的时候,合并它们的线性基来统计答案

 #include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
const int maxn=2e4+,maxq=2e5+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Node{
int b,i;
};
int N,Q,siz[maxn];
vector<Node> q[maxn];
int eg[maxn*][],egh[maxn],ect;
bool flag[maxn];
ll base[maxn][],tmp[],val[maxn],ans[maxq];
int son[maxn],sct,bel[maxn]; inline void adeg(int a,int b){
eg[++ect][]=b,eg[ect][]=egh[a],egh[a]=ect;
}
inline void getroot(int x,int f,int ssiz,int &rt,int &sm){
siz[x]=;int m=;
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==f||flag[b]) continue;
getroot(b,x,ssiz,rt,sm);
m=max(siz[b],m);siz[x]+=siz[b];
}m=max(ssiz-siz[x],m);
if(m<sm) rt=x,sm=m;
} inline void update(ll *bs,ll v){
for(int i=;i>=;i--){
if(v&(1ll<<i)){
if(!bs[i]){bs[i]=v;break;}
else v^=bs[i];
}
}
} inline ll query(ll *bs,ll v){
for(int i=;i>=;i--){
if((v^bs[i])>v) v^=bs[i];
}return v;
} inline void getbase(int x,int f){
update(base[x],val[x]);
son[++sct]=x;
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==f||flag[b]) continue;
memcpy(base[b],base[x],sizeof(base[x]));
getbase(b,x);
}
} inline void solve(int x,int ssiz){
flag[x]=;bel[x]=x;CLR(base[x],);
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(flag[b]) continue;
CLR(base[b],);sct=;
getbase(b,);
for(int i=;i<=sct;i++){
int y=son[i];
for(int j=;j<q[y].size();j++){
int b=q[y][j].b;
if(bel[b]!=x) continue;
memcpy(tmp,base[y],sizeof(tmp));
for(int k=;k<=;k++){
if(base[b][k]) update(tmp,base[b][k]);
}
ans[q[y][j].i]=max(query(tmp,),query(tmp,val[x]));
}
}
for(int i=;i<=sct;i++) bel[son[i]]=x;
}
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(flag[b]) continue;
int rt,sm=1e9;
getroot(b,,siz[b]>siz[x]?ssiz-siz[x]:siz[b],rt,sm);
solve(rt,siz[b]>siz[x]?ssiz-siz[x]:siz[b]);
}
} int main(){
int i,j,k;
N=rd(),Q=rd();
for(i=;i<=N;i++) val[i]=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
for(i=;i<=Q;i++){
int a=rd(),b=rd();
if(a==b) ans[i]=val[a];
else{
q[a].push_back((Node){b,i});
q[b].push_back((Node){a,i});
} }
int rt,sm=1e9;
getroot(,,N,rt,sm);
solve(rt,N);
for(i=;i<=Q;i++)
printf("%lld\n",ans[i]);
return ;
}

luogu3292 幸运数字 (点分治+线性基)的更多相关文章

  1. loj#2013. 「SCOI2016」幸运数字 点分治/线性基

    题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...

  2. 2019.03.25 bzoj4568: [Scoi2016]幸运数字(倍增+线性基)

    传送门 题意:给你一棵带点权的树,多次询问路径的最大异或和. 思路: 线性基上树?? 倍增维护一下就完了. 时间复杂度O(nlog3n)O(nlog^3n)O(nlog3n) 代码: #include ...

  3. 洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 第一眼:这不会是个倍增LCA暴力合并线性基吧…… 打了一发……A了? 所以这真的是个暴力倍增LCA合并线性基么…… ps:据某大佬说其实可以离线之后 ...

  4. SCOI2016幸运数字(树剖/倍增/点分治+线性基)

    题目链接 loj luogu 题意 求树上路径最大点权异或和 自然想到(维护树上路径)+ (维护最大异或和) 那么有三种方法可以选择 1.树剖+线性基 2.倍增+线性基 3.点分治+线性基 至于线性基 ...

  5. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  6. $CF938G\ Shortest\ Path\ Queries$ 线段树分治+线性基

    正解:线段树分治+线性基 解题报告: 传送门$QwQ$ 考虑如果只有操作3,就这题嘛$QwQ$ 欧克然后现在考虑加上了操作一操作二 于是就线段树分治鸭 首先线段树叶子节点是询问嘛这个不用说$QwQ$. ...

  7. [BZOJ4568][SCOI2016]幸运数字(倍增LCA,点分治+线性基)

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2131  Solved: 865[Submit][Statu ...

  8. BZOJ4568 [Scoi2016]幸运数字 【点分治 + 线性基】

    题目链接 BZOJ4568 题解 选任意个数异或和最大,使用线性基 线性基插入\(O(logn)\),合并\(O(log^2n)\) 我们要求树上两点间异或和最大值,由于合并是\(O(log^2n)\ ...

  9. 【BZOJ-4184 】 Shallot 线段树按时间分治 + 线性基

    4184: shallot Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 356  Solved: 180[Submit][Status][Discu ...

随机推荐

  1. semantic-ui 标题

    在semantic-ui中定义了5中标题样式,注意HTML中有h1-h6,而semantic-ui中只有h1-h5. 不过需要注意的是,semantic-ui的标题仍旧使用h1-h5来表示,但是在cl ...

  2. HDU 2003 求绝对值

    http://acm.hdu.edu.cn/showproblem.php?pid=2003 Problem Description 求实数的绝对值.   Input 输入数据有多组,每组占一行,每行 ...

  3. 在linux上安装Scala详细步骤

    scala在linux安装很简单,就是下载,解压,配置环境变量,source一下成功. 提君博客原创 >>提君博客原创 http://www.cnblogs.com/tijun/ < ...

  4. 莫烦theano学习自修第七天【回归结果可视化】

    1.代码实现 from __future__ import print_function import theano import theano.tensor as T import numpy as ...

  5. python设计模式第八天【装饰器模式】

    1.定义 使用包装的释放扩展类的功能,但是不使用继承 2.使用场景 3.代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ def MyDecorat ...

  6. python数据结构与算法第五天【顺序表】

    1.列表存储的两种方式 (1)元素内置方式 采用元素内置的方式只能存放同类型元素的数据类型,例如列表中的元素都为整形,元素类型相同,每个元素存放的地址空间大小也相同,则列表中每个元素都是顺序存放的 ( ...

  7. Delphi中带缓存的数据更新技术

    一. 概念 在网络环境下,数据库应用程序是c/s或者是多层结构的模式.在这种环境下,数据库应用程序的开发应当尽可能考虑减少网络数据传输量,并且尽量提高并发度.基于这个目的,带缓存的数据更新技术应运而生 ...

  8. PreparedStement 用户登录!

    一.准备工作 在qy66数据库下,新建一个denglu表.添加 name password  . package cn.zhouzhou; import java.sql.Connection; im ...

  9. LodopJS代码模版的加载和赋值

    Lodop模版有两种方法,一种是传统的JS语句,可以用JS方法里的eval来执行,一种是文档式模版,是特殊格式的base64码,此篇博文介绍JS模版的加载和赋值.两种模版都可以存入一下地方进行调用,比 ...

  10. Js 中一系列宽度和高度的学习

    在学习元素一系列宽度和高度之前,我们先来看一个平时开发中几乎不会遇到的问题,那就是html文档声明<!DOCTYPE html> 确实会对元素的宽高产生影响.几乎不会遇到,是因为我们在写h ...