题目描述

给定一个n次多项式F(x),和一个m次多项式G(x)。

请求出F(x)和G(x)的卷积。

输入输出格式

输入格式:

第一行2个正整数n,m。

接下来一行n+1个数字,从低到高表示F(x)的系数。

接下来一行m+1个数字,从低到高表示G(x))的系数。

输出格式:

一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数。

#include<bits/stdc++.h>
using namespace std;
const int MAXN=3000100;
const double Pi=acos(-1.0);
int sum,l,n,m,c[MAXN];
struct Node{
    double x,y;
    Node (double x1=0,double y1=0){x=x1,y=y1;}
}a[MAXN],b[MAXN];
Node operator * (Node x,Node y){
    return Node(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);
}
Node operator + (Node x,Node y){
    return Node(x.x+y.x,x.y+y.y);
}
Node operator - (Node x,Node y){
    return Node(x.x-y.x,x.y-y.y);
}
void fft(Node *x,int tf){
    for (int i=0;i<sum;i++)
        if (i<c[i])
            swap(x[i],x[c[i]]);
    for (int i=1;i<sum;i<<=1){
        Node T(cos(Pi/i),tf*sin(Pi/i));
        for (int k=0;k<sum;k+=(i<<1)){
            Node t(1,0);
            for (int j=0;j<i;j++,t=t*T){
                Node xx=x[k+j];
                Node yy=t*x[k+i+j];
                x[k+j]=xx+yy;
                x[k+i+j]=xx-yy;
            }
        }
    }
}
int main(){
    scanf("%d%d",&n,&m),sum=1;
    for (int i=0;i<=n;i++)
        scanf("%lf",&a[i].x);
    for (int i=0;i<=m;i++)
        scanf("%lf",&b[i].x);
    while (sum<=n+m) sum<<=1,l++;
    for (int i=0;i<sum;i++)
        c[i]=(c[i>>1]>>1)|((i&1)<<(l-1));
    fft(a,1),fft(b,1);
    for (int i=0;i<=sum;i++)
        a[i]=a[i]*b[i];
    fft(a,-1);
    for (int i=0;i<=n+m;i++)
        printf("%d ",(int)(a[i].x/sum+0.5));
    return 0;
}

  

【模板】多项式乘法(FFT)的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  3. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  4. @总结 - 1@ 多项式乘法 —— FFT

    目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...

  5. 【learning】多项式乘法&fft

    [吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...

  6. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

  7. UOJ 34 多项式乘法 FFT 模板

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  8. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  9. 【Luogu3808】多项式乘法FFT(FFT)

    题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include&l ...

随机推荐

  1. Day2 列表,元组,字典,集合

    一,列表 定义:[]内以逗号分隔,按照索引,存放各种数据类型,每个位置代表一个元素. list=['alex', 'jack', 'chen', 'shaoye'] #创建一个列表. 特性: 1.可存 ...

  2. C# Note18: 使用wpf制作about dialog(关于对话框)

    前言 基本上任何software或application都会在help菜单中,有着一个关于对话框,介绍产品的版权.版本等信息,还有就是对第三方的引用(add author credits). 首先,看 ...

  3. 一个实际的案例介绍Spring Boot + Vue 前后端分离

    介绍 最近在工作中做个新项目,后端选用Spring Boot,前端选用Vue技术.众所周知现在开发都是前后端分离,本文就将介绍一种前后端分离方式. 常规的开发方式 采用Spring Boot 开发项目 ...

  4. Ajax之Jquery封装使用举例2(Json和JsonArray处理)

    本例主要使用ajax进行异步数据请求,并针对返回数据为json和jsonarray类型的数据处理. 本例中只有前端的代码,后端代码不是本文重点,故省略. 后端接口返回数据为: Json: {" ...

  5. ADO工具类

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Data; ...

  6. Spring Boot 构建电商基础秒杀项目 (十二) 总结 (完结)

    SpringBoot构建电商基础秒杀项目 学习笔记 系统架构 存在问题 如何发现容量问题 如何使得系统水平扩展 查询效率低下 活动开始前页面被疯狂刷新 库存行锁问题 下单操作步骤多,缓慢 浪涌流量如何 ...

  7. TLS/SSL

  8. Nginx 简单的cpu配置

    配置指定CPU Nginx建议进程数和CPU数量一致,这样每个CPU都有自己独立的缓存 worker_processes 4; worker_cpu_affinity 1000 0100 0010 0 ...

  9. BZOJ1835 [ZJOI2010] 基站选址 【动态规划】【线段树】

    题目分析: 首先想一个DP方程,令f[m][n]表示当前在前n个村庄选了m个基站,且第m个基站放在n处的最小值,转移可以枚举上一个放基站的村庄,然后计算两个村庄之间的代价. 仔细思考两个基站之间村庄的 ...

  10. Codeforces543 B. Destroying Roads

    传送门:>Here< 题意:给出一张无向图(边权为1),并给出两对起点和终点以及距离:s1,t1,l1; s2,t2,l2; 要求删除尽量多的边,使得dis(s1,t1)<=l1, ...