「HAOI2018」染色 解题报告
「HAOI2018」染色
是个套路题..
考虑容斥
则恰好为\(k\)个颜色恰好为\(c\)次的贡献为
\]
有两项最开始搞忘了..\(\binom{n}{si}\frac{(si)!}{(s!)^i}\)就是这两个
代表钦定\(si\)个位置去染,然后染色本身是个可重排列
设\(d=\min(\lfloor \frac{n}{s}\rfloor,m)\)
那么答案就是
ans&=\sum_{k=0}^dw_k\binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k}{i-k}\binom{n}{si}\frac{(si)!}{(s!)^i}(m-i)^{n-si}\\
&=\sum_{i=0}^d(-1)^i(m-i)^{n-si}\binom{n}{si}\frac{(si)!}{(s!)^i}\sum_{k=0}^iw_k\binom{m}{k}(-1)^k\binom{m-k}{i-k}\\
&=\sum_{i=0}^d(-1)^i(m-i)^{n-si}\frac{m!}{(m-i)!}\binom{n}{si}\frac{(si)!}{(s!)^i}\sum_{k=0}^i\frac{w_k(-1)^k}{k!}\frac{1}{(i-k)!}
\end{aligned}
\]
然后随便预处理卷一下就好了
Code:
#include <cstdio>
#include <cctype>
#include <algorithm>
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
const int N=(1<<20)+10;
using std::min;
using std::max;
const int mod=1004535809,Gi=334845270;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*(a)*(b)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
int w[N],a[N],b[N],fac[N*10],inv[N*10],turn[N];
void NTT(int *a,int len,int typ)
{
int L=-1;for(int i=1;i<len;i<<=1) ++L;
for(int i=0;i<len;i++)
{
turn[i]=turn[i>>1]>>1|(i&1)<<L;
if(i<turn[i]) std::swap(a[i],a[turn[i]]);
}
for(int le=1;le<len;le<<=1)
{
int wn=qp(typ?3:Gi,(mod-1)/(le<<1));
for(int p=0;p<len;p+=le<<1)
{
int w=1;
for(int i=p;i<p+le;i++,w=mul(w,wn))
{
int x=a[i],y=mul(w,a[i+le]);
a[i]=add(x,y);
a[i+le]=add(x,mod-y);
}
}
}
if(!typ)
{
int inv=qp(len,mod-2);
for(int i=0;i<len;i++) a[i]=mul(a[i],inv);
}
}
int main()
{
int n,m,s,len=1,u,d;
read(n),read(m),read(s);
for(int i=0;i<=m;i++) read(w[i]);
d=min(n/s,m);
while(len<=d) len<<=1;
u=max(n,max(m,len));
fac[0]=1;for(int i=1;i<=u;i++) fac[i]=mul(fac[i-1],i);
inv[u]=qp(fac[u],mod-2);
for(int i=u-1;~i;i--) inv[i]=mul(inv[i+1],i+1);
int ans=0;
for(int i=0;i<len;i++)
{
a[i]=mul(w[i],inv[i]);
if(i&1) a[i]=add(mod,-a[i]);
b[i]=inv[i];
}
NTT(a,len<<1,1),NTT(b,len<<1,1);
for(int i=0;i<len<<1;i++) a[i]=mul(a[i],b[i]);
NTT(a,len<<1,0);
for(int i=0;i<=d;i++)
{
int sum=(i&1)?mod-1:1;
sum=mul(sum,mul(qp(m-i,n-s*i),mul(fac[m],mul(inv[m-i],a[i]))));
sum=mul(sum,mul(fac[n],mul(inv[n-s*i],qp(inv[s],i))));
ans=add(ans,sum);
}
printf("%d\n",ans);
return 0;
}
2019.3.8
「HAOI2018」染色 解题报告的更多相关文章
- 「NOI2016」区间 解题报告
「NOI2016」区间 最近思维好僵硬啊... 一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护. 于是想研究性质,想到为 ...
- 「ZJOI2019」语言 解题报告
「ZJOI2019」语言 3个\(\log\)做法比较简单,但是写起来还是有点麻烦的. 大概就是树剖把链划分为\(\log\)段,然后任意两段可以组成一个矩形,就是个矩形面积并,听说卡卡就过去了. 好 ...
- 「ZJOI2016」旅行者 解题报告
「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...
- 「HNOI2016」树 解题报告
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...
- 「HNOI2016」序列 解题报告
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
- 「HNOI2016」最小公倍数 解题报告
「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...
- 「SCOI2016」围棋 解题报告
「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...
- 「SCOI2016」妖怪 解题报告
「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...
随机推荐
- Nginx Configuring HTTPS servers
Configuring HTTPS servershttp://nginx.org/en/docs/http/configuring_https_servers.html Configuring HT ...
- Hibernate two table same id
Hibernate更新数据(不用update也可以) - 森林木马 - 博客园 https://www.cnblogs.com/owenma/p/3481497.html hibernate级联更新会 ...
- 11 The superlative
1 最高级用来表明三个或更多事物之间的关系.最高级是通过在形容词之前加 "the" 并在之后加 "-est",或在形容词之前加 "the most&q ...
- Day 5-8 自定义元类控制类的实例化行为
__call__方法: 对象后面加括号,触发执行. 注:构造方法的执行是由创建对象触发的,即:对象 = 类名() :而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类( ...
- mysql关联、子查询索引优化
1.驱动表:加索引不起作用,因为全表扫描.表1 left join 表2 ,此时表1是驱动表 被驱动表:给这个加索引. 关联查询 子查询时 尽量不使用not in 或者not exists 而是用 ...
- SpringMVC配置三大组件
1.组件扫描器 使用组件扫描器省去在spring容器配置每个Controller类的繁琐. 使用<context:component-scan>自动扫描标记@Controller的控制器类 ...
- scrapy架构简介
一.scrapy架构介绍 1.结构简图: 主要组成部分:Spider(产出request,处理response),Pipeline,Downloader,Scheduler,Scrapy Engine ...
- Delphi (Library Path Browsing Path)
首先要明白的一个概念是dcu文件 *.dcu是*.pas的编译后单元文件(Delphi Compiled Unit), 编译器把它和库文件连接起来就构成了可执行文件*.exe 或*.dll等,相当于C ...
- 不幸,我的Ryzen 7 1700X中招了,也有segfault
在历经了I7-5775C,I7-5820K之后,决定尝鲜用一下为AMD漂亮翻身的Ryzen 7,海淘了一颗Ryzen 7 1700X 最近听说在极重负载的情况下,CPU会出错,于是从网上找来Kill- ...
- 简单触发器实例insert
create or replace trigger tr_tb_if_archivesafter inserton tb_if_archivesfor each rowdeclarepragma au ...