「HAOI2018」染色

是个套路题..

考虑容斥

则恰好为\(k\)个颜色恰好为\(c\)次的贡献为

\[\binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k}{i-k}\binom{n}{si}\frac{(si)!}{(s!)^i}(m-i)^{n-si}
\]

有两项最开始搞忘了..\(\binom{n}{si}\frac{(si)!}{(s!)^i}\)就是这两个

代表钦定\(si\)个位置去染,然后染色本身是个可重排列

设\(d=\min(\lfloor \frac{n}{s}\rfloor,m)\)

那么答案就是

\[\begin{aligned}
ans&=\sum_{k=0}^dw_k\binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k}{i-k}\binom{n}{si}\frac{(si)!}{(s!)^i}(m-i)^{n-si}\\
&=\sum_{i=0}^d(-1)^i(m-i)^{n-si}\binom{n}{si}\frac{(si)!}{(s!)^i}\sum_{k=0}^iw_k\binom{m}{k}(-1)^k\binom{m-k}{i-k}\\
&=\sum_{i=0}^d(-1)^i(m-i)^{n-si}\frac{m!}{(m-i)!}\binom{n}{si}\frac{(si)!}{(s!)^i}\sum_{k=0}^i\frac{w_k(-1)^k}{k!}\frac{1}{(i-k)!}
\end{aligned}
\]

然后随便预处理卷一下就好了


Code:

#include <cstdio>
#include <cctype>
#include <algorithm>
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
const int N=(1<<20)+10;
using std::min;
using std::max;
const int mod=1004535809,Gi=334845270;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*(a)*(b)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
int w[N],a[N],b[N],fac[N*10],inv[N*10],turn[N];
void NTT(int *a,int len,int typ)
{
int L=-1;for(int i=1;i<len;i<<=1) ++L;
for(int i=0;i<len;i++)
{
turn[i]=turn[i>>1]>>1|(i&1)<<L;
if(i<turn[i]) std::swap(a[i],a[turn[i]]);
}
for(int le=1;le<len;le<<=1)
{
int wn=qp(typ?3:Gi,(mod-1)/(le<<1));
for(int p=0;p<len;p+=le<<1)
{
int w=1;
for(int i=p;i<p+le;i++,w=mul(w,wn))
{
int x=a[i],y=mul(w,a[i+le]);
a[i]=add(x,y);
a[i+le]=add(x,mod-y);
}
}
}
if(!typ)
{
int inv=qp(len,mod-2);
for(int i=0;i<len;i++) a[i]=mul(a[i],inv);
}
}
int main()
{
int n,m,s,len=1,u,d;
read(n),read(m),read(s);
for(int i=0;i<=m;i++) read(w[i]);
d=min(n/s,m);
while(len<=d) len<<=1;
u=max(n,max(m,len));
fac[0]=1;for(int i=1;i<=u;i++) fac[i]=mul(fac[i-1],i);
inv[u]=qp(fac[u],mod-2);
for(int i=u-1;~i;i--) inv[i]=mul(inv[i+1],i+1);
int ans=0;
for(int i=0;i<len;i++)
{
a[i]=mul(w[i],inv[i]);
if(i&1) a[i]=add(mod,-a[i]);
b[i]=inv[i];
}
NTT(a,len<<1,1),NTT(b,len<<1,1);
for(int i=0;i<len<<1;i++) a[i]=mul(a[i],b[i]);
NTT(a,len<<1,0);
for(int i=0;i<=d;i++)
{
int sum=(i&1)?mod-1:1;
sum=mul(sum,mul(qp(m-i,n-s*i),mul(fac[m],mul(inv[m-i],a[i]))));
sum=mul(sum,mul(fac[n],mul(inv[n-s*i],qp(inv[s],i))));
ans=add(ans,sum);
}
printf("%d\n",ans);
return 0;
}

2019.3.8

「HAOI2018」染色 解题报告的更多相关文章

  1. 「NOI2016」区间 解题报告

    「NOI2016」区间 最近思维好僵硬啊... 一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护. 于是想研究性质,想到为 ...

  2. 「ZJOI2019」语言 解题报告

    「ZJOI2019」语言 3个\(\log\)做法比较简单,但是写起来还是有点麻烦的. 大概就是树剖把链划分为\(\log\)段,然后任意两段可以组成一个矩形,就是个矩形面积并,听说卡卡就过去了. 好 ...

  3. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  4. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  5. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  6. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  7. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

  8. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  9. 「SCOI2016」妖怪 解题报告

    「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...

随机推荐

  1. pinpoint vs druid

    主流Java数据库连接池分析(C3P0,DBCP,TomcatPool,BoneCP,Druid) - ppjj - 博客园 https://www.cnblogs.com/nizuimeiabc1/ ...

  2. nginx之快速查找配置文件

    nginx的配置放在nginx.conf文件中,一般我们可以使用以下命令查看服务器中存在的nginx.conf文件.   locate nginx.conf /usr/local/nginx/conf ...

  3. array_column函数

    <?php $arr = [ [ 'id'=>1, 'name'=>'wang', 'age'=>10 ], [ 'id'=>2, 'name'=>'yong', ...

  4. centOS7搭建NFS服务器

    借鉴别人这篇博客搭建成功的:http://blog.51cto.com/mrxiong2017/2087001 NFS系统:用来共享文件.图片.视频 准备两个centOS7服务器,一个作NFS ser ...

  5. Day 4-1 模块的导入方法和路径

    什么是模块? 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码 ...

  6. flutter-StatelessWidget与StatefulWidget

    StatelessWidget和StatefulWidget是flutter的基础组件,日常开发中自定义Widget都是选择继承这两者之一. 两者的区别在于状态的改变,StatelessWidget面 ...

  7. python之路--内置函数03

    一 . 正则表达式 匹配字符串 元字符 . 除了换行 \w 数字, 字母, 下划线 \d 数字 \s 空白符 \n \t \b 单词的边界 \W 非xxx \D \S [ ] 字符组 or的关系 [^ ...

  8. jenkins 邮箱设置

    一.先设置管理员邮箱地址 二.设置邮箱

  9. 设计模式笔记:简单工厂模式(Simple Factory)

    1. 简单工厂模式简介 1.1 定义 简单工厂模式:定义一个Factory类,可以根据参数的不同返回不同类的实例,被创建的实例通常有共同的父类. 简单工厂模式:只需要一个Factory类. 简单工厂模 ...

  10. linux 挂载windows下目录,其它linux机器nfs的目录,自己dd的文件

    如有转载,不胜荣幸.http://www.cnblogs.com/aaron-agu/ 挂载window下共享的目录 //192.168.0.11/share /mnt 挂载其它linux机器下目录 ...