「HAOI2018」染色

是个套路题..

考虑容斥

则恰好为\(k\)个颜色恰好为\(c\)次的贡献为

\[\binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k}{i-k}\binom{n}{si}\frac{(si)!}{(s!)^i}(m-i)^{n-si}
\]

有两项最开始搞忘了..\(\binom{n}{si}\frac{(si)!}{(s!)^i}\)就是这两个

代表钦定\(si\)个位置去染,然后染色本身是个可重排列

设\(d=\min(\lfloor \frac{n}{s}\rfloor,m)\)

那么答案就是

\[\begin{aligned}
ans&=\sum_{k=0}^dw_k\binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k}{i-k}\binom{n}{si}\frac{(si)!}{(s!)^i}(m-i)^{n-si}\\
&=\sum_{i=0}^d(-1)^i(m-i)^{n-si}\binom{n}{si}\frac{(si)!}{(s!)^i}\sum_{k=0}^iw_k\binom{m}{k}(-1)^k\binom{m-k}{i-k}\\
&=\sum_{i=0}^d(-1)^i(m-i)^{n-si}\frac{m!}{(m-i)!}\binom{n}{si}\frac{(si)!}{(s!)^i}\sum_{k=0}^i\frac{w_k(-1)^k}{k!}\frac{1}{(i-k)!}
\end{aligned}
\]

然后随便预处理卷一下就好了


Code:

#include <cstdio>
#include <cctype>
#include <algorithm>
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
const int N=(1<<20)+10;
using std::min;
using std::max;
const int mod=1004535809,Gi=334845270;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*(a)*(b)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
int w[N],a[N],b[N],fac[N*10],inv[N*10],turn[N];
void NTT(int *a,int len,int typ)
{
int L=-1;for(int i=1;i<len;i<<=1) ++L;
for(int i=0;i<len;i++)
{
turn[i]=turn[i>>1]>>1|(i&1)<<L;
if(i<turn[i]) std::swap(a[i],a[turn[i]]);
}
for(int le=1;le<len;le<<=1)
{
int wn=qp(typ?3:Gi,(mod-1)/(le<<1));
for(int p=0;p<len;p+=le<<1)
{
int w=1;
for(int i=p;i<p+le;i++,w=mul(w,wn))
{
int x=a[i],y=mul(w,a[i+le]);
a[i]=add(x,y);
a[i+le]=add(x,mod-y);
}
}
}
if(!typ)
{
int inv=qp(len,mod-2);
for(int i=0;i<len;i++) a[i]=mul(a[i],inv);
}
}
int main()
{
int n,m,s,len=1,u,d;
read(n),read(m),read(s);
for(int i=0;i<=m;i++) read(w[i]);
d=min(n/s,m);
while(len<=d) len<<=1;
u=max(n,max(m,len));
fac[0]=1;for(int i=1;i<=u;i++) fac[i]=mul(fac[i-1],i);
inv[u]=qp(fac[u],mod-2);
for(int i=u-1;~i;i--) inv[i]=mul(inv[i+1],i+1);
int ans=0;
for(int i=0;i<len;i++)
{
a[i]=mul(w[i],inv[i]);
if(i&1) a[i]=add(mod,-a[i]);
b[i]=inv[i];
}
NTT(a,len<<1,1),NTT(b,len<<1,1);
for(int i=0;i<len<<1;i++) a[i]=mul(a[i],b[i]);
NTT(a,len<<1,0);
for(int i=0;i<=d;i++)
{
int sum=(i&1)?mod-1:1;
sum=mul(sum,mul(qp(m-i,n-s*i),mul(fac[m],mul(inv[m-i],a[i]))));
sum=mul(sum,mul(fac[n],mul(inv[n-s*i],qp(inv[s],i))));
ans=add(ans,sum);
}
printf("%d\n",ans);
return 0;
}

2019.3.8

「HAOI2018」染色 解题报告的更多相关文章

  1. 「NOI2016」区间 解题报告

    「NOI2016」区间 最近思维好僵硬啊... 一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护. 于是想研究性质,想到为 ...

  2. 「ZJOI2019」语言 解题报告

    「ZJOI2019」语言 3个\(\log\)做法比较简单,但是写起来还是有点麻烦的. 大概就是树剖把链划分为\(\log\)段,然后任意两段可以组成一个矩形,就是个矩形面积并,听说卡卡就过去了. 好 ...

  3. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  4. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  5. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  6. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  7. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

  8. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  9. 「SCOI2016」妖怪 解题报告

    「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...

随机推荐

  1. no-sql数据库之redis

    一.FAQ 1.如果用连接器连接redis不成功,报如下错误: crash-report-server replied:Request Entity Too Large 则可以先通过cmd命令查看端口 ...

  2. Docker Compose vs. Dockerfile

    Docker Compose vs. Dockerfile - which is better? - Stack Overflowhttps://stackoverflow.com/questions ...

  3. 自己用习惯的idea快捷键笔记

    Ctrl + Space 自动完成(win10下冲突不能用,自己换成 Alt + \ ) 切换方法是菜单中依次打开 file -> settings -> keymap,搜索complet ...

  4. 用户认证--------------auth模块

    一.auth模块 from django.contrib import auth 1 .authenticate()   :验证用户输入的用户名和密码是否相同 提供了用户认证,即验证用户名以及密码是否 ...

  5. python爬虫之PyQuery的基本使用

    PyQuery库也是一个非常强大又灵活的网页解析库,如果你有前端开发经验的,都应该接触过jQuery,那么PyQuery就是你非常绝佳的选择,PyQuery 是 Python 仿照 jQuery 的严 ...

  6. centos5 安装redmine

    一.下载依赖包 yum -y install libxslt-devel libyaml-devel libxml2-devel gdbm-devel libffi-devel yum -y inst ...

  7. JavaSE从入门到精通

      1.JavaSE的安装 windows下安装完成后,配置环境变量如下: JAVA_HOME       C:\Program Files (x86)\Java\jdk1.8.0_91 CLASSP ...

  8. eclipse中将Java项目转换为JavaWeb项目

    eclipse导入一些war项目后,会以java项目形式存在,因此我们需要将java项目转换成web项目,不然项目也许会报错. 1.右键已经导入的项目,选择properties. 2.选中projec ...

  9. jaxp的dom方式操作(查找、添加、修改、删除、遍历节点)

    package cn.itcast.jaxptest; import java.io.IOException; import javax.xml.parsers.DocumentBuilder;imp ...

  10. How to vi

    h:left,j:down,k:up,l:right.wq #write and quitx #cut one letterdd#cut one line/ #searchs/a/b/ #replac ...