Food Log with Speech Recognition and NLP
1. 分词 word segmentation
国内有jieba 分词
2. Named Entity Recognition
训练自己的Model
How can I train my own NER model
https://nlp.stanford.edu/software/crf-faq.html#a
C:\my_study\ML\NLP\stanford-ner--->java -cp stanford-ner.jar edu.stanford.nlp.ie.crf.CRFClassifier -prop chinese.meal.fpp.prop
Invoked on Thu Mar :: CST with arguments: -prop chinese.meal.fpp.prop
usePrevSequences=true
useClassFeature=true
useTypeSeqs2=true
useSequences=true
wordShape=chris2useLC
useTypeySequences=true
useDisjunctive=true
noMidNGrams=true
serializeTo=ner-model.ser.gz
maxNGramLeng=
useNGrams=true
usePrev=true
useNext=true
maxLeft=
trainFile=chinese.meal.fpp.tsv
map=word=,answer=
useWord=true
useTypeSeqs=true
numFeatures =
Time to convert docs to feature indices: 0.0 seconds
numClasses: [=O,=TIME,=QUANTITY,=UNIT,=FOOD]
numDocuments:
numDatums:
numFeatures:
Time to convert docs to data/labels: 0.0 seconds
numWeights:
QNMinimizer called on double function of variables, using M = .
An explanation of the output:
Iter The number of iterations
evals The number of function evaluations
SCALING <D> Diagonal scaling was used; <I> Scaled Identity
LINESEARCH [## M steplength] Minpack linesearch
-Function value was too high
-Value ok, gradient positive, positive curvature
-Value ok, gradient negative, positive curvature
-Value ok, gradient negative, negative curvature
[.. B] Backtracking
VALUE The current function value
TIME Total elapsed time
|GNORM| The current norm of the gradient
{RELNORM} The ratio of the current to initial gradient norms
AVEIMPROVE The average improvement / current value
EVALSCORE The last available eval score Iter ## evals ## <SCALING> [LINESEARCH] VALUE TIME |GNORM| {RELNORM} AVEIMPROVE EVALSCORE Iter evals <D> [M 1.000E-1] 9.068E2 .04s |4.550E1| {4.995E-1} 0.000E0 -
Iter evals <D> [M 1.000E0] 6.222E2 .05s |3.525E1| {3.870E-1} 2.287E-1 -
Iter evals <D> [M 1.000E0] 2.386E2 .07s |5.406E1| {5.935E-1} 9.334E-1 -
Iter evals <D> [M 1.000E0] 9.082E1 .08s |1.571E1| {1.724E-1} 2.246E0 -
Iter evals <D> [M 1.000E0] 7.031E1 .10s |1.181E1| {1.297E-1} 2.379E0 -
Iter evals <D> [M 1.000E0] 5.308E1 .11s |1.025E1| {1.125E-1} 2.681E0 -
Iter evals <D> [1M 2.740E-1] 2.988E1 .14s |7.586E0| {8.328E-2} 4.193E0 -
Iter evals <D> [1M 1.292E-1] 2.234E1 .16s |6.471E0| {7.105E-2} 4.949E0 -
Iter evals <D> [1M 1.801E-1] 1.615E1 .18s |5.573E0| {6.118E-2} 6.127E0 -
Iter evals <D> [1M 1.815E-1] 1.218E1 .24s |4.477E0| {4.915E-2} 7.346E0 -
Iter evals <D> [1M 3.119E-1] 8.873E0 .30s |4.694E0| {5.154E-2} 6.912E0 -
Iter evals <D> [1M 4.760E-1] 6.621E0 .31s |2.092E0| {2.296E-2} 3.504E0 -
Iter evals <D> [M 1.000E0] 6.093E0 .32s |1.906E0| {2.092E-2} 1.390E0 -
Iter evals <D> [M 1.000E0] 5.844E0 .33s |9.067E-1| {9.955E-3} 1.103E0 -
Iter evals <D> [M 1.000E0] 5.721E0 .33s |5.774E-1| {6.339E-3} 8.279E-1 -
Iter evals <D> [M 1.000E0] 5.660E0 .34s |3.535E-1| {3.881E-3} 4.279E-1 -
Iter evals <D> [M 1.000E0] 5.640E0 .35s |1.946E-1| {2.137E-3} 2.961E-1 -
Iter evals <D> [M 1.000E0] 5.632E0 .36s |7.832E-2| {8.599E-4} 1.868E-1 -
Iter evals <D> [M 1.000E0] 5.631E0 .38s |3.559E-2| {3.907E-4} 1.163E-1 -
Iter evals <D> [M 1.000E0] 5.631E0 .39s |2.149E-2| {2.359E-4} 5.758E-2 -
Iter evals <D> [M 1.000E0] 5.631E0 .41s |1.027E-2| {1.128E-4} 1.758E-2 -
Iter evals <D> [M 1.000E0] 5.631E0 .42s |3.631E-3| {3.986E-5} 8.218E-3 -
Iter evals <D> [M 1.000E0] 5.631E0 .44s |1.629E-3| {1.789E-5} 3.791E-3 -
Iter evals <D> [M 1.000E0] 5.631E0 .45s |9.548E-4| {1.048E-5} 1.596E-3 -
Iter evals <D> [M 1.000E0] 5.631E0 .45s |5.724E-4| {6.284E-6} 5.196E-4 -
Iter evals <D> [M 1.000E0] 5.631E0 .47s |1.578E-4| {1.732E-6} 1.686E-4 -
QNMinimizer terminated due to average improvement: | newest_val - previous_val | / |newestVal| < TOL
Total time spent in optimization: .49s
CRFClassifier training ... done [0.6 sec].
Serializing classifier to ner-model.ser.gz... done.
2. 使用训练好的Model来evaluate 一下,看看效果怎么样.
C:\my_study\ML\NLP\stanford-ner--->java -cp stanford-ner.jar edu.stanford.nlp.ie.crf.CRFClassifier -loadClassifier ner-model.ser.gz -testFile chinese.meal.fpp.test.tsv
Invoked on Thu Mar :: CST with arguments: -loadClassifier ner-model.ser.gz -testFile chinese.meal.fpp.test.tsv
testFile=chinese.meal.fpp.test.tsv
loadClassifier=ner-model.ser.gz
Loading classifier from ner-model.ser.gz ... done [0.1 sec].
我 O O
今天 O O
晚上 TIME TIME
吃 O O
了 O O
两 QUANTITY QUANTITY
盘 UNIT UNIT
回锅肉 FOOD FOOD CRFClassifier tagged words in documents at 88.89 words per second.
Entity P R F1 TP FP FN
FOOD 1.0000 1.0000 1.0000
QUANTITY 1.0000 1.0000 1.0000
TIME 1.0000 1.0000 1.0000
UNIT 1.0000 1.0000 1.0000
Totals 1.0000 1.0000 1.0000
还不错哦!
Ref:
1. Standford NLP NER: https://nlp.stanford.edu/software/CRF-NER.html
Food Log with Speech Recognition and NLP的更多相关文章
- 论文翻译:2015_DNN-Based Speech Bandwidth Expansion and Its Application to Adding High-Frequency Missing Features for Automatic Speech Recognition of Narrowband Speech
论文地址:基于DNN的语音带宽扩展及其在窄带语音自动识别中加入高频缺失特征的应用 论文代码:github 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never ...
- Utterance-Wise Recurrent Dropout And Iterative Speaker Adaptation For Robust Monaural Speech Recognition
单声道语音识别的逐句循环Dropout迭代说话人自适应 WRBN(wide residual BLSTM network,宽残差双向长短时记忆网络) [2] J. Heymann, L. Dr ...
- FPGA 17最佳论文导读 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 后面陆续写一些关于神经网络加 ...
- [翻译]Review——How to do Speech Recognition with Deep Learning
原文地址:https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-d ...
- Speech Recognition Grammar Specification Version 1.0 JavaScript TTS 文本发音
Speech Recognition Grammar Specification Version 1.0 https://www.w3.org/TR/speech-grammar/ W3C Recom ...
- 论文阅读笔记“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 ...
- Speech Recognition Java Code - HMM VQ MFCC ( Hidden markov model, Vector Quantization and Mel Filter Cepstral Coefficient)
Hi everyone,I have shared speech recognition code inhttps://github.com/gtiwari333/speech-recognition ...
- C#的语音识别 using System.Speech.Recognition;
using System; using System.Collections.Generic; using System.Linq; using System.Speech.Recognition; ...
- 第三篇:ASR(Automatic Speech Recognition)语音识别
ASR(Automatic Speech Recognition)语音识别: 百度语音--语音识别--python SDK文档: https://ai.baidu.com/docs#/ASR-Onli ...
随机推荐
- CF739E Gosha is hunting
法一: 匹配问题,网络流! 最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]? 连二次!所以i到T流1费0流1费-p[i]*u[i] 最大流由 ...
- [luogu4626][一道水题2]
题目链接 思路 这个首先想到质因数分解.然后发现只要对于每个质数将ans乘以这个质数在从1到n中出现过的最高指数次就行了. 这个\(10^8\)令人发指.一直tle,最后发现吸口氧才能过.. 代码 # ...
- c#两个listbox怎么把内容添加到另外个listbox
https://bbs.csdn.net/topics/392156324?page=1 public partial class Form1 : Form { public ...
- GWAS研究可利用的数据库(持续更新)
1.列表包括数据库名称.表型.是否能下载到基因型(genotype).是否能下载到GWAS结果文件(P值.效应值.SNP位点).目前收集到的有如下: 参考到这些数据库的文献:Genome-wide a ...
- ElasticSearch6.3.2------查询
进入Kibana的控制台:http://localhost:5601/app/kibana#/dev_tools/ 先放一些测试数据进去,不想一条一条,就用bulk 注意格式 正确格式: 解释:ES期 ...
- appium desktop 1.7 byName不能用,重写
@Override public WebElement findElementByName(String name){ String string="new UiSelector().tex ...
- 关于python的315道题
python基础篇 为什么学习Python? 通过什么途径学习的Python? Python和Java.PHP.C.C#.C++等其他语言的对比? 简述解释型和编译型编程语言? Python解释器种类 ...
- ETL过程
ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的过程.ETL一词较常用在数 ...
- Java基础构造方法和this关键字整理
构造方法 8.1构造方法介绍 构造方法的格式: 修饰符 构造方法名(参数列表) { } l 构造方法的体现: n 构造方法没有返回值类型.也不需要写返回值.因为它是为构建对象的,对象创建完,方法就 ...
- Java流程控制语句和数组整理
7.1选择结构switch switch (表达式){ case 目标值1: 执行语句1 break; case 目标值2: 执行语句2 break; ...... case 目标值n: 执行语句n ...