51nod2383
2383 高维部分和
- 1 秒
- 131,072 KB
- 80 分
- 5 级题
输入一个长度为n的数组a[i],下标从0开始(0到n-1)
保证n是2的整数次幂,
对于每个i (0 <= i < n)
求所有满足((i & j) == j)的a[j]之和。
其中&表示按位与,即C++和C中的&,Pascal中的and。
对于100%的数据,1 <= n <= 220, 0 <= a[i] <= 1000
对于70%的数据,1 <= n <= 215,
对于50%的数据,1 <= n <= 210,
虽然这是一个简单题,但是为了降低难度,你可以看看下面的解释。
对于一个一维数组求部分和,可以使用如下代码
for (int i = 1; i <= n; i++) {
a[i] += a[i - 1];
}
对于一个二维数组求部分和,可以使用如下代码
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
}
}
或如下代码
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] += a[i][j - 1]
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] += a[i - 1][j]
}
}
第二份代码看起来更麻烦更慢,来考虑一下三维的情况。
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i][j][k - 1] + a[i][j - 1][k] + a[i - 1][j][k];
a[i][j][k] -= a[i][j - 1][k - 1] + a[i - 1][j - 1][k] + a[i - 1][j][k - 1];
a[i][j][k] += a[i - 1][j - 1][k - 1];
}
}
}
或如下代码
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i][j][k - 1];
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i][j - 1][k];
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i - 1][j][k];
}
}
}
第二份代码就不一定更慢了(第二份复杂度大约3n^3,第一份复杂度大概8n^3)
随着维度更高,第一份代码容斥时项数越来越多,而第二份只是多一次遍历整个数组,优势越来越大。
同样的思路能不能推广到更高维的情况呢?
收起
输入
第一行一个整数n
接下来n行n个整数,表示a[i]
输出
输出共n行,其中第i(0 <= i < n)行表示i的答案。
输入样例
8
1
2
4
8
16
32
64
128
输出样例
1
3
5
15
17
51
85
255 sol:表示只要找找规律就行了(假)
大概像是前缀和一样呗,对于每一位,加上异或那位的值就可以了,这样是不会重复的,
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,a[N];
int main()
{
freopen("std.in","r",stdin);
freopen("std.out","w",stdout);
int i,j;
R(n);
for(i=;i<n;i++) R(a[i]);
for(j=;j<=n;j<<=)
{
for(i=;i<n;i++) if((i&j)==j)
{
a[i]+=a[i^j];
}
}
for(i=;i<n;i++) Wl(a[i]);
return ;
}
/*
input
8
1
2
4
8
16
32
64
128
output
1
3
5
15
17
51
85
255
*/
51nod2383的更多相关文章
随机推荐
- 从code review到Git commit log
最近在读一本技术类的书:朱赟——<跃迁:从技术到管理的硅谷路径>,其中聊了很多很有趣的观点,比如:技术管理.技术实践.硅谷文化.个人成长等. 读到关于硅谷人如何做code review这一 ...
- 将Oracle 12c的某用户数据迁移至OracleXE的用户
前言:OracleXE全称为oracle database 11g express edition .Oracle Database 11g Express Edition是 Oracle 数据库的免 ...
- Netty入门(二)之PC聊天室
参看Netty入门(一):Netty入门(一)之webSocket聊天室 Netty4.X下载地址:http://netty.io/downloads.html 一:服务端 1.SimpleChatS ...
- 10分钟开发 GPS 应用,了解一下
1 前言 在导师公司实习了半个月,参加的是尾气遥测项目,我的任务是开发GPS 的相关事情,从零到有的开发出了 GPS 的 Winform 应用,在这里记录一下开发过程和简要的描述一下将 GPS 数据提 ...
- kafka环境搭建和使用(python API)
引言 上一篇文章了解了kafka的重要组件zookeeper,用来保存broker.consumer等相关信息,做到平滑扩展.这篇文章就实际操作部署下kafka,用几个简单的例子加深对kafka的理解 ...
- RabbitMQ 高可用之镜像队列
如果RabbitMQ集群只有一个broker节点,那么该节点的失效将导致整个服务临时性的不可用,并且可能会导致message的丢失(尤其是在非持久化message存储于非持久化queue中的时候).可 ...
- Java字符串操作及与C#字符串操作的不同
每种语言都会有字符串的操作,因为字符串是我们平常开发使用频率最高的一种类型.今天我们来聊一下Java的字符串操作及在某些具体方法中与C#的不同,对于需要熟悉多种语言的人来说,作为一种参考.进行诫勉 首 ...
- WinForm 之 窗口最小化到托盘及右键图标显示菜单
Form最小化是指整个Form都缩小到任务栏上,但是窗体以Form的标题栏形式显示在任务栏上, 若是想让Form以Icon的形式显示在任务栏右下角,则需要给Form添加一个NotifyIcon控件. ...
- Codeblocks 遇到的问题 Cannot open output file, permission denied
Codeblocks下运行C++的程序时,偶尔会出现 Cannot open output file, permission denied 的问题,导致不能够编译. 在 Stack Overflow ...
- Python-collections模块-57
返回顶部 模块的导入和使用 模块的导入应该在程序开始的地方 更多相关内容 http://www.cnblogs.com/Eva-J/articles/7292109.html 常用模块 colle ...