51Nod1309 Value of all Permutations 期望
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1309.html
题目传送门 - 51Nod1309
题意
void find(int permutation_A[], int M){
x = Length(permutation_A);
sum = 0;
for(i = 0; i < x; i++) {
if (permutation_A[i] <= M)
sum = sum + permutation_A[i];
else
break;
}
return sum;
}
题解
我们首先考虑求答案的期望。
由于期望具有线性性,所以我们可以对于每一个数字对答案的贡献分开考虑。
显然,如果在一个排列中,如果当前数字产生贡献,当且仅当该数字不大于 m ,且所有大于 m 的数字都出现在它后面。那么,设大于等于 m 的数字有 k 个,假设当前数字不大于 m ,那么当前数字产生贡献的概率是 $\frac{1}{k+1}$ 。那么它对总期望的贡献就是 它的值 × 概率。我们只需要把所有不大于 m 的数对期望的贡献求和就可以得到总期望了。又由于,所有不大于 m 的数产生贡献的概率相同,所以我们可以前缀和处理一下,快速求得期望。
所以最终答案就是期望 × 排列总数。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=50005,mod=1e9+7;
int n,q,a[N],Ha[N],p[N],hs;
int Fac[N];
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
int main(){
scanf("%d%d",&n,&q);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n+1);
for (int i=1;i<=n;i++)
Ha[i]=a[i];
hs=1;
for (int i=2;i<=n;i++)
if (Ha[i]!=Ha[i-1])
p[hs]=i-1,Ha[++hs]=Ha[i];
p[hs]=n;
for (int i=1;i<=n;i++)
a[i]=(a[i-1]+a[i])%mod;
Fac[0]=1;
for (int i=1;i<=n;i++)
Fac[i]=1LL*Fac[i-1]*i%mod;
int ans=Fac[n];
for (int i=1;i<=hs;i++)
ans=1LL*ans*Pow(Fac[p[i]-p[i-1]],mod-2)%mod;
while (q--){
int v;
scanf("%d",&v);
int x=upper_bound(Ha+1,Ha+hs+1,v)-Ha-1;
int now=1LL*ans*Pow(n-p[x]+1,mod-2)%mod*a[p[x]]%mod;
printf("%d\n",now);
}
return 0;
}
51Nod1309 Value of all Permutations 期望的更多相关文章
- Permutations II
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
- [LeetCode] Permutations II 全排列之二
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
- [LeetCode] Permutations 全排列
Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- bzoj1415[NOI2005]聪聪和可可-期望的线性性
这道题之前我写过一个巨逗比的写法(传送门:http://www.cnblogs.com/liu-runda/p/6220381.html) 当时的原因是这道题可以抽象出和"绿豆蛙的归宿&qu ...
- hdu 4481 Time travel(高斯求期望)(转)
(转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...
- 【BZOJ3036】绿豆蛙的归宿 概率与期望
最水的概率期望,推荐算法合集之<浅析竞赛中一类数学期望问题的解决方法> #include <iostream> #include <cstdio> using na ...
- POJ2369 Permutations(置换的周期)
链接:http://poj.org/problem?id=2369 Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- UVA&&POJ离散概率与数学期望入门练习[4]
POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...
随机推荐
- c# 操作Word总结(车)
在医疗管理系统中为保存患者的体检和治疗记录,方便以后的医生或其他人查看.当把数据保存到数据库中,需要新建很多的字段,而且操作很繁琐,于是想到网页的信息创建到一个word文本中,在显示的时,可以在线打开 ...
- liunx tomcat 运行模式apr
tomcat运行模式一共三种:bio.nio.apr 网上对这三种运行模式的解释外: bio运行模式:阻塞式I/O操作,表示Tomcat使用的是传统的Java I/O操作(即java.io包及其子包) ...
- CSS弹性(flexible)盒子
弹性盒子 弹性盒子由弹性容器(Flex container)和弹性子元素(Flex item)组成 弹性容器通过display:flex | inline-flex将其定义为弹性容器 ...
- swift 学习- 16 -- 构造过程 02
// 类的继承 和 构造过程 // 类里面的所有的存储型属性 -- 包括所有继承自父类的属性 -- 都必须在构造过程中设置初始值 // Swift 为类类型提供了 两种构造器来确保实例中所有的存储属 ...
- Modbus库开发笔记之四:Modbus TCP Client开发
这一次我们封装Modbus TCP Client应用.同样的我们也不是做具体的应用,而是实现TCP客户端的基本功能.我们将TCP客户端的功能封装为函数,以便在开发具体应用时调用. 对于TCP客户端我们 ...
- Oracle 行转列pivot 、列转行unpivot 的Sql语句总结
这个比较简单,用||或concat函数可以实现 select concat(id,username) str from app_user select id||username str from ap ...
- Java 本周四、五的相关研究——Excel 的文件管理(数据库初步)
日期:2018.9.28 星期五 博客期:013 说到这里,就二话不多说了!这次研习的是与Excel表相关联的方法 1.导入jar包(需要自己下载) 2.AccountManager类的实现(关键看非 ...
- GitHub搭配使用Travis CI 进行自动构建服务
Travis CI (Continuous Integration)持续集成服务 用处:自动监控软件仓库,可以在代码提交后立刻执行自动测试或构建 1.在Github自己的仓库根目录里添加.travis ...
- Brup Suite 渗透测试笔记(七)
继续接上次笔记: 1.Burp Intruder的payload类型的子模块(Character blocks)使用一种给出的输入字符,根据指定的设置产生指定大小的字符块,表现形式为生成指定长度的字符 ...
- yii2 Menu组件的使用
1.首先引入类 use yii\widgets\Menu; 2.配置组件 <?php echo Menu::widget([ //ul的样式以及相应的属性 'options' => ['c ...