Problem Description
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
 
Input
The first line has a number T (T <= 10000) , indicating the number of test cases. For each test case, there are two numbers A and B (0 <= A,B < 10[sup]9[/sup])
 
Output
For every case,you should output "Case #t: " at first, without quotes. The [I]t[/I] is the case number starting from 1. Then output the answer.
 
Sample Input
3
0 100
1 10
5 100
 
Sample Output
Case #1: 1
Case #2: 2
Case #3: 13
 
 
 
其实转化后的数字比原来的要小得多   一开始还纠结开不起数组  
 
把数位的和保存起来  最后读取完的时候再比较即可
 
为了memset优化  dp数组用减法
 
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define inf 0x3f3f3f3f
#define N 20 int f(int x)
{
if(!x)return ;
int ans=f(x/);
return ans*+(x%);
} ll dp[][+];
ll a[N];
int all; ll dfs(int pos,int sum,bool lead,bool limit)
{
if(!pos)
{
return sum<=all;
}
if(sum>all)return ; if(!limit&&!lead&&dp[pos][all-sum]!=-)return dp[pos][all-sum];
ll ans=;
int up=limit?a[pos]:;
rep(i,,up)
{
ans+=dfs(pos-, sum+i*(<<pos-) , lead&&i==,limit&&i==a[pos]); } if(!limit&&!lead)dp[pos][all-sum]=ans;
return ans;
}
ll solve(int b)
{
int pos=; while(b)
{
a[++pos]=b%;
b/=;
} return dfs(pos, ,true,true);
}
int main()
{
CLR(dp,-); RI(cas);
int kase=;
while(cas--)
{
int a,b;
cin>>a>>b;
all=f(a);
printf("Case #%d: %lld\n",++kase,solve(b));
}
return ;
}
 
 
 

F(x) 数位dp的更多相关文章

  1. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  2. HDU 4734 F(x) ★(数位DP)

    题意 一个整数 (AnAn-1An-2 ... A2A1), 定义 F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,求[0..B]内有多少 ...

  3. 【hdu4734】F(x) 数位dp

    题目描述 对于一个非负整数 $x=​​\overline{a_na_{n-1}...a_2a_1}$ ,设 $F(x)=a_n·2^{n-1}+a_{n-1}·2^{n-2}+...+a_2·2^1+ ...

  4. [hdu4734]F(x)数位dp

    题意:求0~f(b)中,有几个小于等于 f(a)的. 解题关键:数位dp #include<bits/stdc++.h> using namespace std; typedef long ...

  5. hdu4734 F(x)(数位dp)

    题目传送门 F(x) Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. HDU4389:X mod f(x)(数位DP)

    Problem Description Here is a function f(x): int f ( int x ) { if ( x == 0 ) return 0; return f ( x ...

  7. HDU 4734 - F(x) - [数位DP][memset优化]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...

  8. HDU-4734 F(x) 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 注意到F(x)的值比较小,所以可以先预处理所有F(x)的组合个数.f[i][j]表示 i 位数时 ...

  9. bzoj 3131 [Sdoi2013]淘金(数位DP+优先队列)

    Description 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块.    一阵风吹 ...

随机推荐

  1. Ex3_28 在2SAT问题中,给定一个字句的集合..._第十二次作业

    参考答案 ----------------------------------------------------------------------------------------------- ...

  2. 【原创】大数据基础之Kerberos(1)简介、安装、使用

    kerberos5-1.17 官方:https://kerberos.org/ 一 简介 The Kerberos protocol is designed to provide reliable a ...

  3. jqgrid获取数据条数

    function getResult() {//获取结果结合的函数,可以通过此函数获取查询后匹配的所有数据行.         var o = jQuery("#jqgrid"); ...

  4. Java测试的题目感想

    日期:2018.9.24 星期一 博客期:012 说起来测试真的是来的时候信心满满,考完的时候慌得出神!我感觉自己会用Scanner类做输出和文件操作就可以在有限时间内把它搞出来了!事实证明我错了!我 ...

  5. django模板导入外部js和css等文件

    1.新建文件夹templates(存放模板文件),新建文件夹media(存放js.css.images文件夹),并把两个文件夹放到了项目的根目录下 2.设定模板路径 设置模板路径比较简单,只要在set ...

  6. 网络扫描信息收集基于(Windows)

    1.首先说明一下一款网络扫描工具,在之前的博客中我曾简要的写过关于Advance IP Scanner使用方法,最近要写网络扫描的工具,所以对这款工具做一个详细的功能细节上的介绍. 如下图  在输入框 ...

  7. cf949C 建模,SCC缩点

    /* 给定n个数据中心,m份资料,每份资料在其中的两个中心备份,一天可供下载的时间是h小时 中心i在第hi小时需要维护,无法下载 现在要将一些中心的维护时间往后推1小时,使得任意时刻每份资料都可以被下 ...

  8. Linux基础三:linux目录结构和目录文件的浏览、管理及维护

    目录文件的浏览.管理及维护(一) 1.Linux文件系统的层次结构 1)Linux文件系统的树状结构:在Linux或UNIX操作系统中,所有的文件和目录都被组织成一个以根节点开始的倒置的树状结构. 2 ...

  9. HTML中body元素的属性

    body元素的属性 属性 描述 text 设定页面文字颜色 bgcolor 设定页面背景颜色 background 设定页面背景图像 bgproperties 设定页面的背景图像为固定状态(不随页面的 ...

  10. linux把程序做成系统服务并自启动

    chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. 一.chkconfig 的使用语法1.c ...