链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2054

线段树写法:

点的颜色只取决于最后一次染的颜色,所以我们可以倒着维护,如果当前区间之前被染过了,就不用再染了,对区间染色我们可以暴力在线段树上进行更新,并用线段树维护下那些区间已经被染色了,被染色的区间更新的时候直接跳过,这样可以节省很多时间。

实现代码:

#include<bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid int m = (l + r) >> 1
const int M = 1e6 + ;
int sum[M<<]; void pushup(int rt){
sum[rt] = sum[rt<<]&&sum[rt<<|];
} void update(int L,int R,int c,int l,int r,int rt){
if(sum[rt]) return ;
if(l == r){
sum[rt] = c;
return ;
}
mid;
if(L <= m) update(L,R,c,lson);
if(R > m) update(L,R,c,rson);
pushup(rt);
} void ct(int l,int r,int rt){
if(l == r){
printf("%d\n",sum[rt]);
return ;
}
mid;
ct(lson); ct(rson);
} int main()
{
int n,m,p,q;
scanf("%d%d%d%d",&n,&m,&p,&q);
for(int i = m;i >= ;i --){
int x = ((i*p+q)%n)+;
int y = ((i*q+p)%n)+;
if(x > y) swap(x,y);
update(x,y,i,,n,);
}
ct(,n,);
}

并查集写法:

和线段树的思路一样,我们需要快速跳过已染色区间,这里用并查集维护已染色的区间,区间更新时可以利用并查集快跳过被染色的区间。

实现代码:

#include<bits/stdc++.h>
using namespace std;
const int M = 1e6+;
int ans[M],f[M];
int Find(int x){
if(x == f[x]) return x;
return f[x] = Find(f[x]);
} int main()
{
int n,m,p,q;
scanf("%d%d%d%d",&n,&m,&p,&q);
for(int i = ;i <= n+;i ++) f[i] = i;
for(int i = m;i >= ;i --){
int x = ((i*p+q)%n)+,y = ((i*q+p)%n)+;
if(x > y) swap(x,y);
for(int j = Find(x);j <= y;j = Find(j+)){
f[j] = Find(j+); ans[j] = i;
}
}
for(int i = ;i <= n;i ++)
printf("%d\n",ans[i]);
return ;
}

bzoj 2054: 疯狂的馒头(线段树||并查集)的更多相关文章

  1. 【BZOJ 4662】 4662: Snow (线段树+并查集)

    4662: Snow Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 136  Solved: 47 Description 2333年的某一天,临冬突 ...

  2. [WC2005]双面棋盘(线段树+并查集)

    线段树+并查集维护连通性. 好像 \(700ms\) 的时限把我的常数超级大的做法卡掉了, 必须要开 \(O_2\) 才行. 对于线段树的每一个结点都开左边的并查集,右边的并查集,然后合并. \(Co ...

  3. 2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集)

    2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集) https://www.luogu.com.cn/problem/CF811E Ste ...

  4. BZOJ.2054.疯狂的馒头(并查集)

    BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...

  5. bzoj2054疯狂的馒头——线段树

    中文题面,一排有n个馒头,用刷子把整个连续的区间刷成一种颜色.因为颜色会覆盖掉之前的.所以我们可以用线段树来反着处理.如果这段区间之前刷到过就不要再遍历进去了,因为这次已经被上次刷的颜色给覆盖了.最后 ...

  6. Luogu P2391 白雪皑皑 && BZOJ 2054: 疯狂的馒头 并查集

    4月的时候在luogu上做过 白雪皑皑 这道题,当时一遍AC可高兴了qwq,后来去了个厕所,路上忽然发现自己的做法是错的qwq...然后就咕咕了qwq 今天看到了 疯狂的馒头 ,发现一毛一样OvO.. ...

  7. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  8. BZOJ 2733 [HNOI2012]永无乡 ——线段树 并查集

    用并查集维护联通块. 用线段树的合并来合并联通块. 自己YY了一个写法. #include <map> #include <cmath> #include <queue& ...

  9. BZOJ 1453 (线段树+并查集)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1453 题意:一个 n*n 的矩阵,每个位置有黑/白两种颜色,有 m 次操作,每次可以翻转 ...

随机推荐

  1. Python_迭代器-生成器-复习-习题_41

    # 迭代器和生成器# 迭代器 # 可迭代协议 —— 含有iter方法的都是可迭代的 # 迭代器协议 —— 含有next和iter的都是迭代器 # 特点 # 节省内存空间 # 方便逐个取值,一个迭代器只 ...

  2. ICPC青岛站网络赛-C-高效模拟

    嗯这道辣鸡题,当时我队友写了错误的代码,我稍微改动了,思路基本上是对了,但是就是超时,我第一直觉是我这个算法思路是没有任何问题的,但是就是TLE,我感觉这个算法已经优化的不能再优化了啊...后面就怀疑 ...

  3. 448C - Painting Fence(分治)

    题意:给出宽为1高为Ai的木板n条,排成一排,每次上色只能是连续的横或竖并且宽度为1,问最少刷多少次可以使这些木板都上上色 分析:刷的第一步要么是所有的都竖着涂完,要么是先横着把最矮的涂完,如果是第一 ...

  4. NFV论文集(三)综述

    一 文章名称:Dependability of the NFV Orchestrator: State of the Art and Research Challenges 发表时间:2018 期刊来 ...

  5. 每周分享之JS数组的使用

    数组,一堆数字归为一组,就是一个数组,一堆对象放在一个组里,也是一个数组,概念很容易懂,说白了就是一个有限集合. JS数组的语法无法两种,插入和移除(语法自行科普).用处挺常见的,既然数组是一个集合, ...

  6. 泛函p121可分Hilbert空间都同构于l^2

    如何理解最后面两句话, L^2与l^2同构 L^2里面 有理系数多项式 是可数稠密子集 所以L^2可分 可分Hilbert空间都同构于 l^2 傅里叶级数是一个稠密的子集

  7. vue-lazyload简单使用

    vue-lazyload简单使用 npm地址:https://www.npmjs.com/package/vue-lazyload github地址:https://github.com/hilong ...

  8. Spring.profile配合Jenkins发布War包,实现开发、测试和生产环境的按需切换

    前两篇不错 Spring.profile实现开发.测试和生产环境的配置和切换 - Strugglion - 博客园https://www.cnblogs.com/strugglion/p/709102 ...

  9. Ionic常用命令

    安装ionic npm install -g ionic 更新www/lib/ionic 目录的文件,如有项目中有bower,此命令会运行bower update ionic, 否则则会从CDN上下载 ...

  10. scala flatmap、reduceByKey、groupByKey

    1.test.txt文件中存放 asd sd fd gf g dkf dfd dfml dlf dff gfl pkdfp dlofkp // 创建一个Scala版本的Spark Context va ...